Guida Completa: Service
Discovery in Reti Locali

Indice

1. Introduzione al problema

2. Soluzione 1: UDP Broadcast Discovery

3. Soluzione 2: Scansione Diretta della Subnet

4. Soluzione 3: File di Configurazione Condiviso

5. Soluzione 4: mDNS/Zeroconf

6. Confronto Comparativo

7. Raccomandazioni per Contesto Didattico

Introduzione al Problema

Il Problema

In un'applicazione client-server tradizionale, il client deve conoscere a priori l'indirizzo IP del server. Questo approccio

presenta diversi limiti:

¢ Rigidita: ogni volta che il server cambia macchina, bisogna modificare il codice client
e Manutenzione: in ambienti con piu server, gestire gli IP diventa complesso

o Scalabilita: difficile distribuire I'applicazione su diverse reti

Usabilita: I'utente finale deve conoscere dettagli tecnici (IP, porta)

La Soluzione: Service Discovery

Il Service Discovery € un meccanismo che permette ai client di trovare automaticamente i servizi disponibili sulla rete

senza configurazione manuale.
Requisiti base:

e Automatico (nessun intervento umano)
o Affidabile (deve trovare il server se esiste)
e Veloce (tempi di discovery ragionevoli)

e Semplice da implementare

Soluzione 1: UDP Broadcast Discovery

Concetto

Il client invia un messaggio broadcast UDP sulla rete locale. Tutti i dispositivi ricevono il messaggio, ma solo il server

Client
|

risponde identificandosi.
Architettura

Network Server

| -— BROADCAST UDP —-------- >|mmmm > |

"DISCOVER SERVER" | \

—————————————————————— |<—----- UNICAST UDP ------|

| "SERVER:IP:PORT" \

== TCP CONNECTION ======== > |

Implementazione Dettagliata

Server - Servizio Discovery

def discovery service (self):

Socket UDP per ricevere broadcast

discovery socket = socket.socket (socket.AF INET, socket.SOCK DGRAM)

discovery socket.setsockopt (socket.SOL SOCKET, socket.SO REUSEADDR, 1)

Bind su TUTTE le interfacce di rete

discovery socket.bind(('', self.discovery port))

while self.running:

data, addr = discovery socket.recvfrom(1024)

message = data.decode('utf-8")

if message == "DISCOVER CHAT SERVER":
Risponde con IP e porta del servizio chat
response = f"CHAT SERVER: {self.get local ip()}:{self.chat port}"

discovery socket.sendto (response.encode ('utf-8'), addr)

Punti chiave:

e SO REUSEADDR: permette di riutilizzare la porta anche se non completamente chiusa
e bind(('', port)): ascolta su tutte le interfacce di rete (0.0.0.0)

¢ Risposta unicast: torna solo al client richiedente

Client - Discovery

def discover server (self, timeout=5):

discovery socket = socket.socket (socket.AF INET, socket.SOCK DGRAM)

Abilita il broadcast
discovery socket.setsockopt (socket.SOL SOCKET, socket.SO BROADCAST, 1)

discovery socket.settimeout (timeout)

Invia broadcast a TUTTI i dispositivi nella subnet
discovery_socket.sendto(
"DISCOVER CHAT SERVER".encode ('utf-8'"),

('<broadcast>', self.discovery port)

Attende risposta
data, addr = discovery socket.recvfrom(1024)

Parsing della risposta...

Punti chiave:

e SO_BROADCAST: necessario per inviare pacchetti broadcast
e <broadcast>: indirizzo speciale 255.255.255.255

e settimeout (): evita attese infinite se nessun server risponde

Pro e Contro

"1 Vantaggi

1. Velocita eccezionale

o Discovery quasi istantaneo (< 1 secondo)
o Un solo pacchetto broadcast necessario

o Nessuna iterazione su IP multipli

2. Efficienza di rete

o Traffico minimo generato

o Un solo pacchetto broadcast + una risposta unicast

o Non sovraccarica la rete

. Scalabilita

o Funziona con qualsiasi numero di dispositivi
o Costo computazionale costante O(1)

o Non dipende dalla dimensione della subnet

. Semplicita concettuale

o Logica diretta e intuitiva
o Facile debugging con Wireshark

o Pattern standard nell'industria

. Supporto multipli server

o Piu server possono rispondere contemporaneamente
o |l client pud scegliere o usare tutti i server trovati

o Utile per load balancing o fault tolerance

. Didattico

o Insegna la differenza tra UDP e TCP
o Mostra l'uso del broadcast

o Introduce concetti di service discovery

1 Svantaggi

. Limitazioni di rete

o Non attraversa i router: funziona solo nella subnet locale (broadcast domain)
o Segmentazione VLAN: non funziona tra VLAN diverse

o VPN: problemi con alcune configurazioni VPN

. Firewall e sicurezza

o Molti firewall bloccano broadcast UDP per default
o Windows Firewall puo0 richiedere regole esplicite

o Alcuni antivirus segnalano come sospetto

. Affidabilita UDP

o UDP non garantisce consegna (unreliable protocol)
o Pacchetti possono essere persi senza natifica

o Nessun acknowledgment o retry automatico

. Potenaziali collisioni

o Se piu server rispondono simultaneamente, possibili conflitti

o Necessita logica di gestione risposte multiple

o Possibile confusione con servizi sulla stessa porta

5. Congestione broadcast

o In reti molto grandi, il broadcast aggiunge traffico
o Ogni dispositivo deve processare il pacchetto

o Switch possono limitare broadcast rate

6. Problemi con Wi-Fi

o Access Point possono filtrare broadcast
o Reti guest spesso bloccano broadcast tra client

o Modalita risparmio energetico pud perdere pacchetti

Quando Usare UDP Broadcast

[Ideale per:

¢ Reti locali piccole/medie (< 254 host)
e Ambienti controllati (lab, ufficio)

e Applicazioni dove velocita € prioritaria
o Prototipi e proof of concept

o Contesto didattico (insegna networking)

[J Evitare quando:

¢ Attraversamento router necessario
o Reti enterprise con policy rigide
e Ambienti con firewall restrittivi

¢ Necessita di garanzie di consegna

Varianti e Ottimizzazioni

Multicast invece di Broadcast

Server
MCAST GRP = '224.1.1.1"
sock.setsockopt (socket.IPPROTO IP, socket.IP ADD MEMBERSHIP,

socket.inet aton (MCAST GRP) + socket.inet aton('0.0.0.0'))

Client

sock.sendto (message, (MCAST GRP, port))

Vantaggi del Multicast:

o Piu efficiente del broadcast (solo interessati ricevono)

e Puo attraversare router se configurato (con IGMP)

¢ Minore impatto sulla rete

Svantaggi:
e Configurazione piu complessa
e Non sempre supportato da router consumer
¢ Richiede setup IGMP
Retry e Timeout Adattivo

def discover server with retry(self, max attempts=3):
for attempt in range(max attempts):
timeout = 2 * (attempt + 1) # Timeout crescente
if self.discover server (timeout) :
return True

return False

Autenticazione e Sicurezza

import hmac

import hashlib

Server

def verify_request(self, data, shared secret):
message, signature = data.split('|"')

expected = hmac.new(shared secret, message.encode(), hashlib.sha256) .hexdigest ()

return hmac.compare digest (signature, expected)

Soluzione 2: Scansione Diretta della
Subnet

Concetto

Il client determina la subnet locale (es. 192.168.1.0/24) e tenta di connettersi sequenzialmente o in parallelo a ogni IP

sulla porta del server.

Architettura

Client Network
|
|-- Calcola subnet: 192.168.1.0/24
|
|-— TCP SYN --> 192.168.1.1:5000 (timeout/refused)
|-— TCP SYN —--> 192.168.1.2:5000 (timeout/refused)
|-- TCP SYN --> 192.168.1.3:5000 (SUCCESS!) v

| ====== Connessione stabilita ======>

Implementazione Dettagliata

Determinazione Subnet

def get local network(self):
Ottiene IP locale

s = socket.socket (socket.AF INET, socket.SOCK DGRAM)

s.connect (("8.8.8.8", 80)) # Non invia realmente dati
local ip = s.getsockname () [0]
s.close ()

Crea oggetto rete con subnet /24
network = ipaddress.IPv4Network(f"{local_ip}/24", strict=False)
Es: 192.168.1.100 -> 192.168.1.0/24

return network

Punti chiave:

e Trucco con connect () a 8.8.8.8: determina quale interfaccia userebbe il sistema
e ipaddress.IPv4Network: modulo standard Python per gestione IP
e strict=False: accetta IP host e calcola network address

e /24:subnet mask 255.255.255.0 (254 host utilizzabili)

Scansione con Threading

def scan network(self, max workers=50) :
network = self.get local network()

found servers = []

with concurrent.futures.ThreadPoolExecutor (max workers=max workers)
Crea un future per ogni IP
future to ip = {
executor.submit (self.check server, ip): ip

for ip in network.hosts ()

Processa risultati man mano che arrivano

for future in concurrent.futures.as completed(future to ip):
ip = future to ip[future]
if future.result():

found servers.append(str(ip))

return found servers

as executor:

Punti chiave:

e ThreadPoolExecutor: pool di thread per esecuzione parallela
e max workers=50: numero massimo thread simultanei (bilanciamento carico/velocita)
e as completed (): processa risultati appena disponibili (non attende tutti)

e network.hosts (): esclude network address e broadcast (x.x.x.0 e x.x.x.255)

Verifica Server

def check server(self, ip, timeout=0.5):
try:
test socket = socket.socket (socket.AF INET, socket.SOCK STREAM)

test socket.settimeout (timeout)

connect ex() ritorna 0 se successo, errno altrimenti

result = test socket.connect ex((str(ip), self.server port))

test socket.close()
return result == 0 # True se connessione riuscita
except:

return False

Punti chiave:

e connect_ex (): versione non-blocking di connect() che ritorna errno
e Timeout breve (0.5s): bilancia velocita e affidabilita

o Gestione eccezioni: host irraggiungibili possono causare exception

Pro e Contro

1 Vantaggi

1. Affidabilita massima

o Funziona sempre se il server € raggiungibile via TCP
o Non dipende da broadcast o multicast

o Nessuna dipendenza da configurazioni di rete speciali

2. Attraversamento ostacoli

o Funziona con firewall che bloccano broadcast
o Compatibile con reti Wi-Fi guest (isolamento client)

o Nessun problema con policy di rete restrittive

3. Compatibilita universale

o Funziona su qualsiasi rete TCP/IP
o Nessuna configurazione speciale richiesta

o Supportato da tutti i sistemi operativi

4. Debugging semplice

o Facile vedere cosa sta succedendo
o Log chiari degli IP testati

o ldentificazione rapida di problemi di rete

5. Nessuna dipendenza da UDP

o Elimina problemi di affidabilita UDP
o Un solo protocollo da gestire (TCP)

o Stack networking piu semplice

6. Flessibilita

o Puo scansionare range personalizzati
o Supporta subnet non standard

o Adattabile a topologie complesse

1 Svantaggi

1. Lentezza significativa

o Con subnet /24: ~254 IP da testare

o Anche con parallelismo: 5-20 secondi tipici
o Timeout cumulativo puo essere alto

o Esperienza utente negativa per discovery lento

2. Carico di rete elevato

o Genera 254+ connessioni TCP (SYN packets)
o Ogni tentativo = handshake TCP parziale
o Sovraccarico su switch e router

o Puo saturare tabelle di connessione NAT

3. Rilevamento sicurezza

o IDS/IPS possono segnalare come port scan
o Antivirus potrebbero bloccare
o Log di sicurezza pieni di tentativi connessione

o Possibile blocco temporaneo IP da fail2ban

4, Scalabilita problematica

o Subnet /16 (65k host): impraticabile
o Tempo cresce linearmente con dimensione rete
o Consumo risorse (thread/memoria) elevato

o Difficile parallelizzare oltre certi limiti

5. Falsi positivi

o Altri servizi sulla stessa porta possono rispondere
o Necessita verifica aggiuntiva (handshake applicativo)

o Confusione con servizi non correlati

6. Problemi con subnet variabili

o Assume sempre /24 (limite arbitrario)
o Reti con /16 o /8 non gestibili
o Subnet /25 0 /26 funzionano ma rare

o Calcolo automatico subnet mask complesso

7. Timeout management critico

o Timeout troppo breve: miss del server
o Timeout troppo lungo: scansione lentissima
o Condizioni di rete variabili difficili da gestire

o Necessita di tuning per ogni ambiente

Quando Usare Scansione Subnet

[Ideale per:

e Ambienti con firewall restrittivi

o Reti Wi-Fi guest o isolate

e Quando broadcast non funziona
¢ Subnet molto piccole (< 50 host)
» Necessita di affidabilitd assoluta

e Scopo didattico: insegnare port scanning e threading

[Evitare quando:

e Reti grandi (> 254 host)

o Velocita é critica

¢ Policy di sicurezza rigide (IDS attivi)
¢ Risorse limitate (embedded systems)

o Discovery frequenti necessari

Ottimizzazioni Avanzate

Scansione Intelligente con Priorita

def smart scan(self):
Prova prima gli IP piu probabili
likely ips = [
f"{base}.1", # Gateway/server comuni
f"{base}.2",
f" {base}.10",
f" {base}.100",

f"{base}.254"

for ip in likely ips:
if self.check server(ip):

return ip

Poi scansione completa

return self.full scan()

Scansione con Backoff Esponenziale

def adaptive scan(self):
batch size = 10
while hosts remaining:
batch = get next batch(batch size)

results = scan_batch(batch, timeout=current timeout)

if successful rate > 0.8:

timeout *= 0.9 # Riduci timeout

batch size *= 2 # Aumenta parallelismo
else:

timeout *= 1.2 # Aumenta timeout

batch size //= 2 # Riduci parallelismo

Cache dei Risultati

import json

from datetime import datetime, timedelta

def cache server location(self, ip):
cache = {
"ip': ip,
'timestamp': datetime.now().isoformat (),
'ttl': 3600 # 1 ora
}
with open('server cache.json', 'w') as f:

json.dump (cache, f)

def try cached server (self):
try:
with open('server cache.json', 'r') as f:

cache = json.load(f)

cached time = datetime.fromisoformat (cache['timestamp'])
if datetime.now() - cached time < timedelta (seconds=cache['ttl']):
if self.check server(cache['ip'], timeout=1l):
return cache['ip']
except:
pass

return None

Scansione Multi-Port

def scan multiple ports(self, ip, ports=[5000, 5001, 5002]):
for port in ports:
if self.check server(ip, port):
return (ip, port)

return None

Soluzione 3: File di Configurazione
Condiviso

Concetto

Server e client accedono a un file condiviso (su rete o cloud) dove il server scrive il proprio IP all'avvio e il client lo legge.

Implementazione

Server - Scrittura Configurazione

import json

from datetime import datetime

def register server (self):

config = {
'server ip': self.get local ip(),
'server port': self.chat port,
'hostname': socket.gethostname(),
'last update': datetime.now().isoformat (),
'status': 'online'

Opzione 1: File di rete
with open('//shared-drive/config/server.json', 'w') as f:

json.dump (config, f£)

Opzione 2: Cloud storage (es. Google Drive API)

upload to drive('server.json', config)

Opzione 3: Database semplice

save to sqglite('servers.db', config)

Client - Lettura Configurazione

def discover server from config(self):

try:
with open('//shared-drive/config/server.json', 'r') as f:
config = json.load(f)
Verifica se il file non € troppo vecchio
last update = datetime.fromisoformat (config['last update'])
if datetime.now() - last update < timedelta (minutes=5):
return config['server ip'], config['server port']
except:

return None, None

Pro e Contro

"1 Vantaggi

1. Semplicita estrema

o Implementazione banale (poche righe)
o Nessun networking complesso

o Debugging immediato (leggi il file)
2. Affidabilita

o Non dipende da configurazioni di rete
o Funziona attraverso subnet diverse

o Nessun problema con firewall

3. Persistenza

o Informazione sopravvive a restart
o Storico disponibile

o Audit trail automatico

4. Flessibilita

o Pud contenere metadati aggiuntivi
o Supporto multipli server facilmente

o Configurazione avanzata possibile

5. Nessun traffico di rete

o Zero overhead di discovery

o Non impatta performance di rete

o Scalabile a qualsiasi dimensione

1 Svantaggi

. Dipendenza esterna critica

o Richiede risorsa condivisa sempre accessibile
o Single point of failure

o Se condivisione non disponibile, sistema bloccato

. Problemi di sincronizzazione

o Race conditions possibili
o Stale data (informazioni obsolete)

o Necessita meccanismi di lock

. Sicurezza

o File accessibile da chiunque (rischio manomissione)
o Necessita permessi condivisione corretti

o Possibili information disclosure

. Performance

o Latenza di I/O file system
o Overhead di rete per accesso condivisione

o Possibili colli di bottiglia con molti client

. Setup complesso

o Richiede configurazione infrastruttura
o Mappatura drive/mount necessaria

o Problemi di portabilita tra OS

. Non scalabile enterprise

o Non adatto a deployment grandi
o Gestione complicata in cloud

o Problemi con containerizzazione

Quando Usare File Condiviso
[Ideale per:

Ambienti con NAS o file server esistente
Reti enterprise con Active Directory
Sviluppo/test interno

Pochi client (<10)

Prototipazione rapida

[Evitare quando:

¢ Produzione senza infrastruttura condivisa

Deployment cloud-native

Alta disponibilita richiesta

Molti client concorrenti

Varianti

Database Centralizzato
import sqglite3

def register to db(self):
conn = sqglite3.connect('//server/db/services.db"')
cursor = conn.cursor ()
cursor.execute ('"''
INSERT OR REPLACE INTO servers
(service name, ip, port, last seen)
VALUES (2, 2, 2, ?)
'''", ('chat server', self.ip, self.port, datetime.now()))
conn.commit ()

conn.close ()

Redis/Key-Value Store
import redis
def register to redis(self):
r = redis.Redis (host='shared-server', port=6379)

r.setex ('chat server:location',
300, # TTL 5 minuti

f"{self.ip}:{self.port}")

Soluzione 4: mDNS/Zeroconf

Concetto

Protocollo standard (RFC 6762) per service discovery senza configurazione. Usato da Bonjour (Apple), Avahi (Linux), e

simili.

Implementazione con Zeroconf

Server

from zeroconf import Zeroconf, ServicelInfo

import socket

def register mdns_service (self):

zeroconf = Zeroconf ()

service info = ServicelInfo
" chatserver. tcp.local.", # Tipo servizio
"MyChatServer. chatserver. tcp.local.", # Nome istanza
addresses=[socket.inet aton(self.get local ip())1],
port=self.chat port,
properties={
'version': '1.0',

'max users': '10'

zeroconf.register service(service info)

return zeroconf

Client

from zeroconf import Zeroconf, ServiceBrowser

class ChatServerListener:
def add service(self, zeroconf, type, name):
info = zeroconf.get service info(type, name)
if info:
address = socket.inet ntoa(info.addresses[0])
port = info.port
print (f"Server trovato: {address}:{port}")

self.server found(address, port)

def discover mdns_ server (self):
zeroconf = Zeroconf ()
listener = ChatServerListener ()

browser = ServiceBrowser (zeroconf, " chatserver. tcp.local.", listener)

Attende discovery...

Pro e Contro

"1 Vantaggi

1. Standard industriale

o Protocollo RFC ufficiale
o Supporto nativo in molti OS

o Ampiamente testato e affidabile

2. Zero configuration

o Nessun setup richiesto
o Plug and play reale

o User-friendly

3. Feature-rich

o Metadati servizio inclusi

[o]

Supporto multipli servizi

o TXT records per info aggiuntive

o

Service browsing

4. Efficienza

o Usa multicast intelligente

o Cache distribuita

o Minimo traffico di rete

5. Interoperabilita

o Funziona con servizi esistenti
o Integrazione con Bonjour/Avahi

o Standard cross-platform

1 Svantaggi

1. Dipendenze esterne

o Richiede libreria zeroconf 0 python-zeroconf
o Installazione dipendenze su ogni client

o Potenziali problemi di versioning

2. Complessita

o Curva di apprendimento ripida
o Documentazione dispersa

o Debugging complicato

3. Limitazioni di rete

o Non attraversa router (come broadcast)
o Problemi con alcune configurazioni firewall

o Richiede multicast funzionante

4. Overhead

o Libreria pesante per uso semplice
o Consumo memoria maggiore

o Startup time piu lungo

5. Non didattico

o Black box per studenti
o Nasconde dettagli implementativi

o Poco formativo su networking

Quando Usare mDNS

[Ideale per:

o Applicazioni professionali

o Prodotti commerciali

¢ Integrazione con ecosistema Apple/Linux
o Necessita di standard riconosciuto

o Feature avanzate richieste

e Scopo didattico (troppo astratto)

e Dipendenze non accettabili

¢ Deployment semplificato necessario

e Controllo completo richiesto

Criterio

Velocita
Affidabilita

Semplicita Codice

Efficienza Rete
Compatibilita
Firewall
Scalabilita

Zero Config
Valore Didattico
Prod-Ready
Setup Richiesto
Dipendenze
Cross-Subnet
Sicurezza IDS
Costo CPU
Costo Memoria

Subnet /24

UDP Broadcast:
Scansione (seq):
Scansione

File Condiviso:

mDNS :

(//50) :

[Evitare quando:

Confronto Comparativo

Tabella Comparativa Completa

(254 host):

UDP Scansione File
Broadcast Subnet Condiviso
D000 (<1s) D0 (5-20s) 000 (1-2s)
oo Uoodn oo
oudo O ooaod
ouaon 0] oo
U0 Uoogn Uooon
Uooon U0 oo
Uootn Uoodn N
oUgod ooof HIN
NI HINE 0]
Nessuno Nessuno Medio
Nessuna Nessuna Infrastruttura
1 No 1 No 1 Si
1 Ok A Port scan 1 Ok
Basso Alto Basso
Basso Medio Basso
Metriche Prestazionali
Tempo di Discovery (Media)
0.5s IlII
© IESEEENENENENENENNENENERNRNRNRNENENERE
125
1.2s N
2.1s NN

mDNS/Zeroconf

0000 (1-3s)
00oo

00

0ooo

gog

oo

ooogd

o

gooud
Librerie
python-zeroconf
1 No

1 Ok

Medio

Alto

Traffico di Rete Generato

UDP Broadcast: ~500 bytes I
Scansione /24: ~15 KB R EER R RN AR RN
File Condiviso: 0 bytes (I/0 file)

mDNS : ~2 KB [

False Positive Rate

UDP Broadcast: < 1% (protocollo custom)

Scansione: 5-10% (altri servizi su stessa porta)
File Condiviso: < 1% (lettura diretta)

mDNS : < 1% (service type specifico)

Matrice Decisionale

Caratteristiche Ambiente - Soluzione Raccomandata

Rete locale piccola UDP Broadcast [

[I
| |
| Firewall permissivi |
| Scopo didattico |
| |

Firewall restrittivi Scansione Subnet

Broadcast non funziona

[1
| |
| Wi-Fi guest (solo se < 50 host) |
| |
L |

NAS/file server esiste File Condiviso

Pochi client statici

T 1
| |
| Ambiente corporate (prototipi e test) |
| |
| |

Prodotto commerciale mDNS/Zeroconf [J

[

| Standard richiesto

| Integrazione Bonjour
L

Raccomandazioni per Contesto Didattico

Per Corsi di Sistemi e Reti

Approccio Pedagogico Progressivo

Lezione 1: Concetti Base

e Problema: hardcoded IP addresses
¢ Introduzione al service discovery

¢ Soluzione manuale (file configurazione)

Lezione 2: UDP Broadcast [RACCOMANDATO

o Differenza UDP vs TCP
e Concetto di broadcast
¢ Implementazione pratica

e Debug con Wireshark

Lezione 3: Scansione e Threading

e Port scanning etico
e Concurrency in Python
e ThreadPoolExecutor

¢ Ottimizzazioni performance

Lezione 4: Protocolli Standard

¢ Introduzione mDNS
¢ Analisi RFC

¢ Confronto soluzioni custom vs standard

Lab Pratico Suggerito

Esercitazione Completa (4 ore)

Parte 1: Implementazione Base (90 min)

1. Implementare chat server/client basico con IP hardcoded
2. Identificare limiti e problemi

3. Discussione: quali soluzioni esistono?

Parte 2: UDP Broadcast (90 min)

1. Aggiungere discovery service al server
2. Implementare discovery sul client

3. Testing in rete locale

4. Cattura traffico con Wireshark
5. Analisi pacchetti UDP

Parte 3: Problematiche Reali (45 min)

1. Simulare firewall: bloccare UDP broadcast
. Tentare discovery — fallisce

. Implementare fallback a scansione subnet

A O N

. Confrontare prestazioni

Parte 4: Discussione e Ottimizzazioni (45 min)

1. Analisi pro/contro di ogni soluzione
. Quando usare quale approccio

. Sicurezza: autenticazione discovery

A O DN

. Progetti avanzati: load balancing, failover

Progetti Studente Avanzati

Livello Intermedio

o Hybrid Discovery: prova broadcast, poi scansione come fallback
o Multi-Server Load Balancer: client sceglie server meno carico
o Server Heartbeat: verifica periodica che server sia ancora attivo

¢ Encrypted Discovery: autenticazione tramite challenge-response

Livello Avanzato

o Service Registry: server centrale che traccia tutti i servizi
¢ Geo-Discovery: preferenza server geograficamente vicini
o Fault Tolerance: failover automatico se server primario cade

e Cross-Subnet Discovery: relay nodes per attraversare router

Valutazione e Criteri

Rubrica Valutazione Progetto

Criterio Punti Descrizione
Funzionalita 30 Discovery funziona in condizioni normali
Robustezza 20 Gestione errori e timeout
Performance 15 Velocita discovery accettabile
Codice 15 Leggibilita, commenti, struttura
Documentazione 10 README, diagrammi, esempi
Testing 10 Test cases e validazione

Domande di Verifica Comprensione

1. Concettuali

o Perché UDP per discovery e TCP per chat?
o Cosa succede se due server rispondono al broadcast?

o Quali problemi causa il broadcast in reti grandi?

2. Pratiche

o Come modificheresti il codice per supportare IPv6?
o Come implementeresti retry con backoff esponenziale?

o Come garantiresti che solo server autorizzati rispondano?

3. Analisi

o Confronta overhead di broadcast vs scansione in subnet /16
o Stima il tempo di scansione con 1000 host e timeout 0.5s

o Quale soluzione useresti per loT con 100+ dispositivi?

Risorse Didattiche Aggiuntive

Tools Consigliati

o Wireshark: analisi traffico di rete (broadcast, multicast)
e nmap: studio port scanning professionale
¢ netcat: testing manuale connessioni TCP/UDP

 iperf: misurazione performance di rete

Approfondimenti

e RFC 6762 (mDNS): lettura standard ufficiale
¢ Stevens "Unix Network Programming": capitoli su broadcast/multicast
o Beej's Guide to Network Programming: reference pratica

e Python socket documentation: API dettagliata

Progetti Open Source da Studiare

¢ Avahi: implementazione mDNS Linux
e Bonjour: implementazione Apple
e Syncthing: discovery P2P avanzato

e BitTorrent DHT: distributed hash table per discovery

Conclusioni e Best Practices

Decision Tree Finale

Devo implementare service discovery?

F— Scopo didattico?

| | si - UDP Broadcast (insegna networking)
| L No !

F— Ambiente controllato (lab/ufficio)?

| F— S1 - UDP Broadcast (veloce e semplice)
| L No !

F— Firewall bloccano broadcast?

| F— Si — Scansione Subnet (se < 100 host)
| L No - UDP Broadcast

F— Necessario attraversare router?

| b si - File Condiviso o Server Registry
| L No - UDP Broadcast

F— Prodotto commerciale?

| L. si - mDNS/Zeroconf (standard)

L Prototipo rapido interno?

L. si . File Condiviso (semplicissimo)

Checklist Implementazione

Prima di Iniziare

. Definire requisiti: velocita vs affidabilita
. Analizzare ambiente di rete target

. Verificare policy firewall

. Decidere se cross-subnet necessario
. Valutare competenze team

Durante Sviluppo

. Implementare timeout appropriati
. Gestire eccezioni di rete

. Aggiungere logging dettagliato

. Testare con Wireshark

o Validare su reti diverse

Prima del Deploy

0 N O g A~ WO N =

def

Test con firewall attivo

Test con antivirus attivo
Misurare performance reali
Documentare requisiti di rete

Preparare troubleshooting guide

Errori Comuni da Evitare

. Timeout troppo brevi: miss dei server su reti lente

. Nessun fallback: discovery fallisce, app inutilizzabile

. Mancanza logging: debugging impossibile

. Ignorare IPv6: sempre piu comune

. Hardcoded subnet /24: reti diverse usano /16, /22, ecc.
. Nessuna autenticazione: rischi di sicurezza

. Broadcasting eccessivo: congestione di rete

. Race conditions: multipli server, nessuna sincronizzazione

Pattern Avanzati

Hybrid Approach (Raccomandato per Produzione)

discover server robust (self):
1. Prova cache locale
if server := self.try cache():

return server

2. Prova UDP broadcast (veloce)
if server := self.udp discovery(timeout=2):
self.cache server (server)

return server

3. Fallback a scansione (affidabile)
if server := self.subnet scan(max workers=30):
self.cache server (server)

return server

4. Fallback manuale

return self.manual input ()

Service Registry Pattern

Server centrale mantiene lista servizi
class ServiceRegistry:
def register(self, service name, ip, port, ttl=300):
self.services[service name] = {
'ip': ip,
'port': port,

'expires': time.time () + ttl

def discover (self, service name) :
if service name in self.services:
if time.time() < self.services[service name] ['expires']:
return self.services[service name]

return None

Sicurezza: Considerazioni Critiche

Autenticazione Discovery

import hmac

import hashlib

SECRET KEY = b'shared-secret-key'

Server
def authenticate response(self, message) :
signature = hmac.new (SECRET KEY, message.encode (), hashlib.sha256) .hexdigest()

return f"{message}|{signature}"

Client
def verify response(self, response):
message, signature = response.rsplit('|', 1)
expected = hmac.new (SECRET KEY, message.encode (), hashlib.sha256) .hexdigest ()

return hmac.compare digest (signature, expected)

Rate Limiting

from collections import defaultdict

import time

class RatelLimiter:
def init (self, max requests=5, window=60) :
self.requests = defaultdict (list)
self.max requests = max requests

self.window = window

def allow request(self, ip):
now = time.time ()
Rimuovi richieste vecchie
self.requests[ip] = [t for t in self.requests[ip]

if now - t < self.window]

if len(self.requests[ip]) < self.max requests:
self.requests[ip] .append (now)
return True

return False

Riferimenti e Risorse

Standard e RFC

e RFC 6762: Multicast DNS
e RFC 2782: DNS SRV Records
e RFC 919: Broadcasting Internet Datagrams

Libri Consigliati

¢ "Unix Network Programming" - W. Richard Stevens
e "Computer Networks" - Andrew S. Tanenborough

o "Effective Python" - Brett Slatkin (per threading)

Documentazione Online

e Python socket module: https://docs.python.org/3/library/socket.html

(https://docs.python.org/3/library/socket.html)

e Python ipaddress module: https://docs.python.org/3/library/ipaddress.html

(https://docs.python.org/3/library/ipaddress.html)

o Zeroconf documentation: https:/python-zeroconf.readthedocs.io/ (https://python-zeroconf.readthedocs.io/)

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/ipaddress.html
https://python-zeroconf.readthedocs.io/

Tools e Software

o Wireshark: https://www.wireshark.org/ (https://www.wireshark.org/)

e nmap: https://nmap.org/ (https://nmap.org/)

e Avahi: https://www.avahi.org/ (https://www.avahi.org/)

Appendice: Codice Completo
Implementazioni

A. UDP Broadcast Discovery (Versione Estesa)

Vedi artifact chat_server discovery

Vedi artifact chat client discovery

B. Scansione Subnet (Versione Estesa)

Vedi artifact chat client subnet scan

C. Esempio File Condiviso

https://www.wireshark.org/
https://nmap.org/
https://www.avahi.org/

server config writer.py
import json
import socket

from datetime import datetime

class ConfigFileServer:
def _ init (self, config path='\\\\shared\\server config.json'):
self.config path = config path

self.port = 5000

def register(self):
config = {
'ip': self.get local ip(),
'port': self.port,
'hostname': socket.gethostname(),
'timestamp': datetime.now().isoformat (),

'status': 'active'

try:
with open(self.config path, 'w') as f:
json.dump (config, £, indent=2)
print (f"Server registrato: {config}")
except Exception as e:

print (f"Errore registrazione: {e}")

def get local ip(self):
s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
s.connect (("8.8.8.8", 80))
ip = s.getsockname () [0]
s.close ()

return ip

client config reader.py
import json

from datetime import datetime, timedelta

class ConfigFileClient:
def _ init (self, config path='\\\\shared\\server config.json'):

self.config path = config path

def discover server (self, max age minutes=5):

try:

with open(self.config path, 'r') as f:

config = json.load(f)

Verifica che il config non sia troppo vecchio

timestamp = datetime.fromisoformat (config['timestamp'])

age = datetime.now() - timestamp

if age < timedelta (minutes=max age minutes) :
print (f"Server trovato: {config['ip']}:{config['port']}")
return config['ip'], config['port']
else:
print (f"Config obsoleto (eta: {age})")
return None, None
except FileNotFoundError:
print ("File di configurazione non trovato")
return None, None
except Exception as e:
print (f"Errore lettura config: {e}")

return None, None

D. Esempio mDNS/Zeroconf Base

server mdns.py
from zeroconf import Zeroconf, ServicelInfo
import socket

import time

class MDNSServer:
def init (self, port=5000):
self.port = port
self.zeroconf = None

self.service info = None

def register service(self):

self.zeroconf = Zeroconf ()

Definizione servizio
service type = " chatserver. tcp.local."

service name = f"MyChatServer.{service type}"

Ottieni IP locale

local ip = self.get local ip()

Crea service info
self.service info = ServicelInfo(
service type,
service name,
addresses=[socket.inet aton(local ip)],
port=self.port,
properties={
b'version': b'1.0"',
b'description': b'Python Chat Server'
}y

server=f"{socket.gethostname () }.local."

Registra
self.zeroconf.register service(self.service info)
print (f"Servizio mDNS registrato: {service name}")

print (f"IP: {local ip}, Porta: {self.port}")

def unregister service(self):
if self.zeroconf and self.service info:
self.zeroconf.unregister service(self.service info)

self.zeroconf.close ()

print ("Servizio mDNS deregistrato")

def get local ip(self):
s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
s.connect (("8.8.8.8", 80))
ip = s.getsockname () [0]
s.close ()

return ip

client mdns.py
from zeroconf import Zeroconf, ServiceBrowser, ServiceStateChange
import socket

import time

class MDNSListener:
def init (self):
self.server found = False
self.server ip = None

self.server port = None

def on service state change(self, zeroconf, service type, name, state change):
if state change is ServiceStateChange.Added:
info = zeroconf.get service info(service type, name)
if info:
self.server ip = socket.inet ntoa(info.addresses[0])
self.server port = info.port
self.server found = True

print (f"Server trovato: {self.server ip}:{self.server port}")

class MDNSClient:
def discover server (self, timeout=5):
zeroconf = Zeroconf ()

listener = MDNSListener ()

browser = ServiceBrowser (
zeroconf,
" chatserver. tcp.local.",

handlers=[listener.on service state change]

Attendi discovery
start time = time.time ()
while not listener.server found and (time.time() - start time) < timeout:

time.sleep(0.1)

N OO o A W0DN

zeroconf.close()

if listener.server found:
return listener.server ip, listener.server port

return None, None

Glossario Tecnico

Broadcast: Invio di un messaggio a tutti i dispositivi in una subnet
Multicast: Invio a un gruppo specifico di destinatari

Unicast: Invio point-to-point a un singolo destinatario

Service Discovery: Meccanismo per trovare servizi in rete automaticamente
mDNS: Multicast DNS, protocollo per discovery locale

Subnet: Sottorete, divisione logica di una rete IP

CIDR: Classless Inter-Domain Routing, notazione per subnet (es. /24)

Port Scanning: Tecnica per identificare porte aperte su un host

TTL: Time To Live, durata di validita di un dato

Zeroconf: Zero Configuration Networking, set di tecnologie per auto-config

Documento versione 1.0
Ultima modifica: Gennaio 2026

Autore: Sistema di documentazione tecnica

Guida Completa: Service
Discovery in Reti Locali

Indice

. Introduzione al problema

. Soluzione 1: UDP Broadcast Discovery

. Soluzione 2: Scansione Diretta della Subnet

. Soluzione 3: File di Configurazione Condiviso

. Soluzione 4: mDNS/Zeroconf

. Confronto Comparativo

. Raccomandazioni per Contesto Didattico

Introduzione al Problema

Il Problema

In un'applicazione client-server tradizionale, il client deve conoscere a priori l'indirizzo IP del server. Questo approccio

presenta diversi limiti:

¢ Rigidita: ogni volta che il server cambia macchina, bisogna modificare il codice client
o Manutenzione: in ambienti con piu server, gestire gli IP diventa complesso
o Scalabilita: difficile distribuire I'applicazione su diverse reti

o Usabilita: I'utente finale deve conoscere dettagli tecnici (IP, porta)

La Soluzione: Service Discovery

Il Service Discovery € un meccanismo che permette ai client di trovare automaticamente i servizi disponibili sulla rete

senza configurazione manuale.

Requisiti base:

Automatico (nessun intervento umano)

Affidabile (deve trovare il server se esiste)

Veloce (tempi di discovery ragionevoli)

e Semplice da implementare

Soluzione 1: UDP Broadcast Discovery

Concetto

I client invia un messaggio broadcast UDP sulla rete locale. Tutti i dispositivi ricevono il messaggio, ma solo il server

risponde identificandosi.

Architettura

Client Network Server
| | \
| -— BROADCAST UDP -------- D I > |
| "DISCOVER SERVER" | |
| | \
R e L E e E e T | <—=—=-- UNICAST UDP —----- |

| | "SERVER:IP:PORT" \

| ====== TCP CONNECTION >

Implementazione Dettagliata

Server - Servizio Discovery

def discovery service (self):
Socket UDP per ricevere broadcast
discovery socket = socket.socket (socket.AF INET, socket.SOCK DGRAM)

discovery socket.setsockopt (socket.SOL SOCKET, socket.SO REUSEADDR, 1)

Bind su TUTTE le interfacce di rete

discovery socket.bind(('', self.discovery port))

while self.running:
data, addr = discovery socket.recvfrom(1024)

message = data.decode('utf-8")

if message == "DISCOVER CHAT SERVER":
Risponde con IP e porta del servizio chat
response = f"CHAT SERVER:({self.get local ip()}:{self.chat port}"

discovery_socket.sendto(response.encode('utf—8'), addr)

Punti chiave:

e SO_REUSEADDR: permette di riutilizzare la porta anche se non completamente chiusa
e bind(('', port)): ascolta su tutte le interfacce di rete (0.0.0.0)

¢ Risposta unicast: torna solo al client richiedente

Client - Discovery

def discover server (self, timeout=5):

discovery socket = socket.socket (socket.AF INET, socket.SOCK DGRAM)

Abilita il broadcast
discovery socket.setsockopt (socket.SOL SOCKET, socket.SO BROADCAST, 1)

discovery socket.settimeout (timeout)

Invia broadcast a TUTTI i dispositivi nella subnet
discovery_socket.sendto(
"DISCOVER CHAT SERVER".encode ('utf-8'"),

('<broadcast>', self.discovery port)

Attende risposta
data, addr = discovery socket.recvfrom(1024)

Parsing della risposta...

Punti chiave:

e SO BROADCAST: necessario per inviare pacchetti broadcast
e <broadcast>:indirizzo speciale 255.255.255.255

e settimeout (): evita attese infinite se nessun server risponde

Pro e Contro

1 Vantaggi

1. Velocita eccezionale

o Discovery quasi istantaneo (< 1 secondo)
o Un solo pacchetto broadcast necessario

o Nessuna iterazione su IP multipli

2. Efficienza di rete

o Traffico minimo generato
o Un solo pacchetto broadcast + una risposta unicast

o Non sovraccarica la rete

3. Scalabilita

o Funziona con qualsiasi numero di dispositivi
o Costo computazionale costante O(1)

o Non dipende dalla dimensione della subnet

4. Semplicita concettuale

o Logica diretta e intuitiva
o Facile debugging con Wireshark

o Pattern standard nell'industria

5. Supporto multipli server

o Piu server possono rispondere contemporaneamente
o |l client puo scegliere o usare tutti i server trovati

o Utile per load balancing o fault tolerance

6. Didattico

o Insegna la differenza tra UDP e TCP
o Mostra I'uso del broadcast
o Introduce concetti di service discovery

] Svantaggi

1. Limitazioni di rete

o Non attraversa i router: funziona solo nella subnet locale (broadcast domain)
o Segmentazione VLAN: non funziona tra VLAN diverse

o VPN: problemi con alcune configurazioni VPN

2. Firewall e sicurezza

o Molti firewall bloccano broadcast UDP per default
o Windows Firewall pud richiedere regole esplicite

o Alcuni antivirus segnalano come sospetto

3. Affidabilita UDP

o UDP non garantisce consegna (unreliable protocol)
o Pacchetti possono essere persi senza notifica

o Nessun acknowledgment o retry automatico

4. Potenziali collisioni

o Se piu server rispondono simultaneamente, possibili conflitti
o Necessita logica di gestione risposte multiple

o Possibile confusione con servizi sulla stessa porta

5. Congestione broadcast

o In reti molto grandi, il broadcast aggiunge traffico
o Ogni dispositivo deve processare il pacchetto

o Switch possono limitare broadcast rate

6. Problemi con Wi-Fi

o Access Point possono filtrare broadcast
o Reti guest spesso bloccano broadcast tra client

o Modalita risparmio energetico pud perdere pacchetti

Quando Usare UDP Broadcast

(1 Ideale per:

¢ Reti locali piccole/medie (< 254 host)
e Ambienti controllati (lab, ufficio)

e Applicazioni dove velocita € prioritaria
o Prototipi e proof of concept

o Contesto didattico (insegna networking)

] Evitare quando:

¢ Attraversamento router necessario
e Reti enterprise con policy rigide
e Ambienti con firewall restrittivi

¢ Necessita di garanzie di consegna

Varianti e Ottimizzazioni

Multicast invece di Broadcast

Server
MCAST GRP = '224.1.1.1"
sock.setsockopt (socket.IPPROTO IP, socket.IP ADD MEMBERSHIP,

socket.inet aton (MCAST GRP) + socket.inet aton('0.0.0.0"))

Client

sock.sendto (message, (MCAST GRP, port))

Vantaggi del Multicast:

o Piu efficiente del broadcast (solo interessati ricevono)
o Puo attraversare router se configurato (con IGMP)

¢ Minore impatto sulla rete

Svantaggi:

o Configurazione piu complessa
e Non sempre supportato da router consumer

¢ Richiede setup IGMP

Retry e Timeout Adattivo

def discover server with retry(self, max attempts=3):
for attempt in range(max attempts):
timeout = 2 * (attempt + 1) # Timeout crescente
if self.discover server (timeout) :
return True

return False

Autenticazione e Sicurezza

import hmac

import hashlib

Server
def verify request(self, data, shared secret):
message, signature = data.split('|"')
expected = hmac.new(shared secret, message.encode(), hashlib.sha256) .hexdigest ()

return hmac.compare digest (signature, expected)

Soluzione 2: Scansione Diretta della
Subnet

Concetto

Il client determina la subnet locale (es. 192.168.1.0/24) e tenta di connettersi sequenzialmente o in parallelo a ogni IP

sulla porta del server.
Architettura

Client Network
|
|-- Calcola subnet: 192.168.1.0/24
|
|-— TCP SYN --> 192.168.1.1:5000 (timeout/refused)
|--= TCP SYN --> 192.168.1.2:5000 (timeout/refused)
|-- TCP SYN --> 192.168.1.3:5000 (SUCCESS!) Vv

| ====== Connessione stabilita ======>

Implementazione Dettagliata

Determinazione Subnet

def get local network(self):
Ottiene IP locale

s = socket.socket (socket.AF INET, socket.SOCK DGRAM)

s.connect (("8.8.8.8", 80)) # Non invia realmente dati
local ip = s.getsockname () [0]
s.close ()

Crea oggetto rete con subnet /24
network = ipaddress.IPv4Network(f"{local_ip}/24", strict=False)
Es: 192.168.1.100 -> 192.168.1.0/24

return network

Punti chiave:

e Trucco con connect () a 8.8.8.8: determina quale interfaccia userebbe il sistema
e ipaddress.IPv4Network: modulo standard Python per gestione IP
e strict=False: accetta IP host e calcola network address

e /24:subnet mask 255.255.255.0 (254 host utilizzabili)

Scansione con Threading

def scan network(self, max workers=50) :
network = self.get local network()

found servers = []

with concurrent.futures.ThreadPoolExecutor (max workers=max workers)
Crea un future per ogni IP
future to ip = {
executor.submit (self.check server, ip): ip

for ip in network.hosts ()

Processa risultati man mano che arrivano

for future in concurrent.futures.as completed(future to ip):
ip = future to ip[future]
if future.result():

found servers.append(str(ip))

return found servers

as executor:

Punti chiave:

e ThreadPoolExecutor: pool di thread per esecuzione parallela
e max workers=50: numero massimo thread simultanei (bilanciamento carico/velocita)
e as completed(): processa risultati appena disponibili (non attende tutti)

e network.hosts (): esclude network address e broadcast (x.x.x.0 e x.x.x.255)

Verifica Server

def check server(self, ip, timeout=0.5):
try:
test socket = socket.socket (socket.AF INET, socket.SOCK STREAM)

test socket.settimeout (timeout)

connect ex() ritorna 0 se successo, errno altrimenti

result = test socket.connect ex((str(ip), self.server port))

test socket.close()
return result == 0 # True se connessione riuscita
except:

return False

Punti chiave:

e connect_ex (): versione non-blocking di connect() che ritorna errno
e Timeout breve (0.5s): bilancia velocita e affidabilita

e Gestione eccezioni: host irraggiungibili possono causare exception

Pro e Contro

1 Vantaggi

1. Affidabilita massima

o Funziona sempre se il server € raggiungibile via TCP
o Non dipende da broadcast o multicast

o Nessuna dipendenza da configurazioni di rete speciali

2. Attraversamento ostacoli

o Funziona con firewall che bloccano broadcast
o Compatibile con reti Wi-Fi guest (isolamento client)

o Nessun problema con policy di rete restrittive

3. Compatibilita universale

o Funziona su qualsiasi rete TCP/IP
o Nessuna configurazione speciale richiesta

o Supportato da tutti i sistemi operativi

4. Debugging semplice

o Facile vedere cosa sta succedendo
o Log chiari degli IP testati

o ldentificazione rapida di problemi di rete

5. Nessuna dipendenza da UDP

o Elimina problemi di affidabilita UDP
o Un solo protocollo da gestire (TCP)

o Stack networking piu semplice

6. Flessibilita

o Puo scansionare range personalizzati
o Supporta subnet non standard

o Adattabile a topologie complesse

] Svantaggi

1. Lentezza significativa

o Con subnet /24: ~254 IP da testare

o Anche con parallelismo: 5-20 secondi tipici
o Timeout cumulativo puo essere alto

o Esperienza utente negativa per discovery lento

2. Carico di rete elevato

o Genera 254+ connessioni TCP (SYN packets)
o Ogni tentativo = handshake TCP parziale
o Sovraccarico su switch e router

o Puo saturare tabelle di connessione NAT

3. Rilevamento sicurezza

o IDS/IPS possono segnalare come port scan
o Antivirus potrebbero bloccare
o Log di sicurezza pieni di tentativi connessione

o Possibile blocco temporaneo IP da fail2ban

4. Scalabilita problematica

o Subnet /16 (65k host): impraticabile
o Tempo cresce linearmente con dimensione rete
o Consumo risorse (thread/memoria) elevato

o Difficile parallelizzare oltre certi limiti

5. Falsi positivi

o Altri servizi sulla stessa porta possono rispondere
o Necessita verifica aggiuntiva (handshake applicativo)

o Confusione con servizi non correlati

6. Problemi con subnet variabili

o Assume sempre /24 (limite arbitrario)
o Reti con /16 o /8 non gestibili
o Subnet /25 0 /26 funzionano ma rare

o Calcolo automatico subnet mask complesso

7. Timeout management critico

o Timeout troppo breve: miss del server
o Timeout troppo lungo: scansione lentissima
o Condizioni di rete variabili difficili da gestire

o Necessita di tuning per ogni ambiente

Quando Usare Scansione Subnet

[Ideale per:

e Ambienti con firewall restrittivi

o Reti Wi-Fi guest o isolate

e Quando broadcast non funziona
e Subnet molto piccole (< 50 host)
o Necessita di affidabilitd assoluta

e Scopo didattico: insegnare port scanning e threading

[Evitare quando:

e Reti grandi (> 254 host)

o Velocita é critica

¢ Policy di sicurezza rigide (IDS attivi)
¢ Risorse limitate (embedded systems)

o Discovery frequenti necessari

Ottimizzazioni Avanzate

Scansione Intelligente con Priorita

def smart scan(self):
Prova prima gli IP piu probabili
likely ips = [
f"{base}.1", # Gateway/server comuni
f"{base}.2",
f" {base}.10",
f"{base}.100",

f"{base}.254"

for ip in likely ips:
if self.check server(ip):

return ip

Poil scansione completa

return self.full scan()

Scansione con Backoff Esponenziale

def adaptive scan(self):
batch size = 10
while hosts remaining:
batch = get next batch(batch size)

results = scan_batch(batch, timeout=current timeout)

if successful rate > 0.8:

timeout *= 0.9 # Riduci timeout

batch size *= 2 # Aumenta parallelismo
else:

timeout *= 1.2 # Aumenta timeout

batch size //= 2 # Riduci parallelismo

Cache dei Risultati

import json

from datetime import datetime, timedelta

def cache server location(self, ip):
cache = {
"ip': ip,
'timestamp': datetime.now() .isoformat (),
'ttl': 3600 # 1 ora
}
with open('server cache.json', 'w') as f:

json.dump (cache, f)

def try cached server (self):
try:
with open('server cache.json', 'r') as f:

cache = json.load(f)

cached time = datetime.fromisoformat (cache['timestamp'])
if datetime.now() - cached time < timedelta (seconds=cache['ttl']):
if self.check server(cache['ip'], timeout=1l):
return cache['ip']
except:
pass

return None

Scansione Multi-Port

def scan multiple ports(self, ip, ports=[5000, 5001, 5002]):
for port in ports:
if self.check server(ip, port):
return (ip, port)

return None

Soluzione 3: File di Configurazione
Condiviso

Concetto

Server e client accedono a un file condiviso (su rete o cloud) dove il server scrive il proprio IP all'avvio e il client lo legge.

Implementazione

Server - Scrittura Configurazione

import json

from datetime import datetime

def register server (self):

config = {
'server ip': self.get local ip(),
'server port': self.chat port,
'hostname': socket.gethostname(),
'last update': datetime.now () .isoformat (),
'status': 'online'

Opzione 1: File di rete
with open('//shared-drive/config/server.json', 'w') as f:

json.dump (config, f£)

Opzione 2: Cloud storage (es. Google Drive API)

upload to drive('server.json', config)

Opzione 3: Database semplice

save to sqglite('servers.db', config)

Client - Lettura Configurazione

def discover server from config(self):

try:
with open('//shared-drive/config/server.json', 'r') as f:
config = json.load(f)
Verifica se il file non e troppo vecchio
last update = datetime.fromisoformat (config['last update'])
if datetime.now() - last update < timedelta (minutes=5):
return config['server ip'], config['server port']
except:

return None, None

Pro e Contro

1 Vantaggi

1. Semplicita estrema

o Implementazione banale (poche righe)
o Nessun networking complesso

o Debugging immediato (leggi il file)
2. Affidabilita

o Non dipende da configurazioni di rete
o Funziona attraverso subnet diverse

o Nessun problema con firewall

3. Persistenza

o Informazione sopravvive a restart
o Storico disponibile

o Audit trail automatico

4. Flessibilita

o Pud contenere metadati aggiuntivi
o Supporto multipli server facilmente

o Configurazione avanzata possibile

5. Nessun traffico di rete

o Zero overhead di discovery

o Non impatta performance di rete

o Scalabile a qualsiasi dimensione

1 Svantaggi

. Dipendenza esterna critica

o Richiede risorsa condivisa sempre accessibile
o Single point of failure

o Se condivisione non disponibile, sistema bloccato

. Problemi di sincronizzazione

o Race conditions possibili
o Stale data (informazioni obsolete)

o Necessita meccanismi di lock

. Sicurezza

o File accessibile da chiunque (rischio manomissione)
o Necessita permessi condivisione corretti

o Possibili information disclosure

. Performance

o Latenza di I/O file system
o Overhead di rete per accesso condivisione

o Possibili colli di bottiglia con molti client

. Setup complesso

o Richiede configurazione infrastruttura
o Mappatura drive/mount necessaria

o Problemi di portabilita tra OS

. Non scalabile enterprise

o Non adatto a deployment grandi
o Gestione complicata in cloud

o Problemi con containerizzazione

Quando Usare File Condiviso
[Ideale per:

Ambienti con NAS o file server esistente
Reti enterprise con Active Directory
Sviluppo/test interno

Pochi client (<10)

Prototipazione rapida

[Evitare quando:

¢ Produzione senza infrastruttura condivisa

Deployment cloud-native

Alta disponibilita richiesta

Molti client concorrenti

Varianti

Database Centralizzato
import sqglite3

def register to db(self):
conn = sqglite3.connect('//server/db/services.db"')
cursor = conn.cursor ()
cursor.execute ('"''
INSERT OR REPLACE INTO servers
(service name, ip, port, last seen)
VALUES (2, 2, 2, ?)
'''", ('chat server', self.ip, self.port, datetime.now()))
conn.commit ()

conn.close ()

Redis/Key-Value Store
import redis
def register to redis(self):
r = redis.Redis (host='shared-server', port=6379)

r.setex ('chat server:location',
300, # TTL 5 minuti

f"{self.ip}:{self.port}")

Soluzione 4: mDNS/Zeroconf

Concetto

Protocollo standard (RFC 6762) per service discovery senza configurazione. Usato da Bonjour (Apple), Avahi (Linux), e

simili.

Implementazione con Zeroconf

Server

from zeroconf import Zeroconf, ServicelInfo

import socket

def register mdns_service (self):

zeroconf = Zeroconf ()

service info = ServicelInfo (
" chatserver. tcp.local.", # Tipo servizio
"MyChatServer. chatserver. tcp.local.", # Nome istanza
addresses=[socket.inet aton(self.get local ip())1],
port=self.chat port,
properties={
'version': '1.0',

'max users': '10'

zeroconf.register service(service info)

return zeroconf

Client

from zeroconf import Zeroconf, ServiceBrowser

class ChatServerListener:
def add service(self, zeroconf, type, name):
info = zeroconf.get service info(type, name)
if info:
address = socket.inet ntoa(info.addresses[0])
port = info.port
print (f"Server trovato: {address}:{port}")

self.server found(address, port)

def discover mdns_ server (self):
zeroconf = Zeroconf ()
listener = ChatServerListener ()

browser = ServiceBrowser (zeroconf, " chatserver. tcp.local.", listener)

Attende discovery...

Pro e Contro

1 Vantaggi

1. Standard industriale

o Protocollo RFC ufficiale
o Supporto nativo in molti OS

o Ampiamente testato e affidabile

2. Zero configuration

o Nessun setup richiesto
o Plug and play reale

o User-friendly

3. Feature-rich

o Metadati servizio inclusi

[o]

Supporto multipli servizi

o TXT records per info aggiuntive

o

Service browsing

4. Efficienza

o Usa multicast intelligente

o Cache distribuita

o Minimo traffico di rete

5. Interoperabilita

o Funziona con servizi esistenti
o Integrazione con Bonjour/Avahi

o Standard cross-platform

1 Svantaggi

1. Dipendenze esterne

o Richiede libreria zeroconf 0 python-zeroconf
o Installazione dipendenze su ogni client

o Potenziali problemi di versioning

2. Complessita

o Curva di apprendimento ripida
o Documentazione dispersa

o Debugging complicato

3. Limitazioni di rete

o Non attraversa router (come broadcast)
o Problemi con alcune configurazioni firewall

o Richiede multicast funzionante

4. Overhead

o Libreria pesante per uso semplice
o Consumo memoria maggiore

o Startup time piu lungo

5. Non didattico

o Black box per studenti
o Nasconde dettagli implementativi

o Poco formativo su networking

Quando Usare mDNS

[Ideale per:

o Applicazioni professionali

¢ Prodotti commerciali

¢ Integrazione con ecosistema Apple/Linux
» Necessita di standard riconosciuto

o Feature avanzate richieste

e Scopo didattico (troppo astratto)

e Dipendenze non accettabili

¢ Deployment semplificato necessario

¢ Controllo completo richiesto

Criterio

Velocita
Affidabilita

Semplicita Codice

Efficienza Rete
Compatibilita
Firewall
Scalabilita

Zero Config
Valore Didattico
Prod-Ready
Setup Richiesto
Dipendenze
Cross-Subnet
Sicurezza IDS
Costo CPU
Costo Memoria

Subnet /24

UDP Broadcast:
Scansione (seq):
Scansione

File Condiviso:

mDNS :

(//50) :

[Evitare quando:

Confronto Comparativo

Tabella Comparativa Completa

(254 host):

UDP Scansione File
Broadcast Subnet Condiviso
OO0 (<1s) D0 (5-20s) 000 (1-2s)
oo Uoodn oo
oudo O ooaod
ouaon 0] oo
U0 Uoogn Uooon
Uooon U0 oo
Uootn Uoodn N
oUgod ooof HIN
NI HINE 0]
Nessuno Nessuno Medio
Nessuna Nessuna Infrastruttura
1 No 1 No 1 Si
1 Ok A Port scan 1 Ok
Basso Alto Basso
Basso Medio Basso
Metriche Prestazionali
Tempo di Discovery (Media)
0.5s IlII
© IESSEENENENENENENNENENERNRNRNRNENENERE
125
1.2s N
2.1 NN

mDNS/Zeroconf

0000 (1-3s)
00oo

00

0ooo

gog

oo

ooogd

N

ouaod
Librerie
python-zeroconf
"1 No

1 Ok

Medio

Alto

Traffico di Rete Generato

UDP Broadcast: ~500 bytes I
Scansione /24: ~15 KB R EER R RN AR RN
File Condiviso: 0 bytes (I/0 file)

mDNS : ~2 KB [

False Positive Rate

UDP Broadcast: < 1% (protocollo custom)

Scansione: 5-10% (altri servizi su stessa porta)
File Condiviso: < 1% (lettura diretta)

mDNS : < 1% (service type specifico)

Matrice Decisionale

Caratteristiche Ambiente - Soluzione Raccomandata

Rete locale piccola UDP Broadcast [

[I
| |
| Firewall permissivi |
| Scopo didattico |
| |

Firewall restrittivi Scansione Subnet

Broadcast non funziona

[1
| |
| Wi-Fi guest (solo se < 50 host) |
| |
L |

NAS/file server esiste File Condiviso

Pochi client statici

T 1
| |
| Ambiente corporate (prototipi e test) |
| |
| |

Prodotto commerciale mDNS/Zeroconf [J

[

| Standard richiesto

| Integrazione Bonjour
L

Raccomandazioni per Contesto Didattico

Per Corsi di Sistemi e Reti

Approccio Pedagogico Progressivo

Lezione 1: Concetti Base

e Problema: hardcoded IP addresses
e Introduzione al service discovery

¢ Soluzione manuale (file configurazione)

Lezione 2: UDP Broadcast [RACCOMANDATO

o Differenza UDP vs TCP
e Concetto di broadcast
¢ Implementazione pratica

e Debug con Wireshark

Lezione 3: Scansione e Threading

e Port scanning etico
e Concurrency in Python
e ThreadPoolExecutor

¢ Ottimizzazioni performance

Lezione 4: Protocolli Standard

¢ Introduzione mDNS
¢ Analisi RFC

¢ Confronto soluzioni custom vs standard

Lab Pratico Suggerito

Esercitazione Completa (4 ore)

Parte 1: Implementazione Base (90 min)

1. Implementare chat server/client basico con IP hardcoded
2. Identificare limiti e problemi

3. Discussione: quali soluzioni esistono?

Parte 2: UDP Broadcast (90 min)

1. Aggiungere discovery service al server
2. Implementare discovery sul client

3. Testing in rete locale

4. Cattura traffico con Wireshark
5. Analisi pacchetti UDP

Parte 3: Problematiche Reali (45 min)

1. Simulare firewall: bloccare UDP broadcast
. Tentare discovery — fallisce

. Implementare fallback a scansione subnet

A WO DN

. Confrontare prestazioni

Parte 4: Discussione e Ottimizzazioni (45 min)

1. Analisi pro/contro di ogni soluzione
. Quando usare quale approccio

. Sicurezza: autenticazione discovery

A O DN

. Progetti avanzati: load balancing, failover

Progetti Studente Avanzati

Livello Intermedio

o Hybrid Discovery: prova broadcast, poi scansione come fallback
o Multi-Server Load Balancer: client sceglie server meno carico
o Server Heartbeat: verifica periodica che server sia ancora attivo

¢ Encrypted Discovery: autenticazione tramite challenge-response

Livello Avanzato

o Service Registry: server centrale che traccia tutti i servizi
o Geo-Discovery: preferenza server geograficamente vicini
o Fault Tolerance: failover automatico se server primario cade

e Cross-Subnet Discovery: relay nodes per attraversare router

Valutazione e Criteri

Rubrica Valutazione Progetto

Criterio Punti Descrizione
Funzionalita 30 Discovery funziona in condizioni normali
Robustezza 20 Gestione errori e timeout
Performance 15 Velocita discovery accettabile
Codice 15 Leggibilita, commenti, struttura
Documentazione 10 README, diagrammi, esempi
Testing 10 Test cases e validazione

Domande di Verifica Comprensione

1. Concettuali

o Perché UDP per discovery e TCP per chat?
o Cosa succede se due server rispondono al broadcast?

o Quali problemi causa il broadcast in reti grandi?

2. Pratiche

o Come modificheresti il codice per supportare IPv6?
o Come implementeresti retry con backoff esponenziale?

o Come garantiresti che solo server autorizzati rispondano?

3. Analisi

o Confronta overhead di broadcast vs scansione in subnet /16
o Stima il tempo di scansione con 1000 host e timeout 0.5s

o Quale soluzione useresti per loT con 100+ dispositivi?

Risorse Didattiche Aggiuntive

Tools Consigliati

o Wireshark: analisi traffico di rete (broadcast, multicast)
e nmap: studio port scanning professionale
¢ netcat: testing manuale connessioni TCP/UDP

 iperf: misurazione performance di rete

Approfondimenti

e RFC 6762 (mDNS): lettura standard ufficiale
o Stevens "Unix Network Programming": capitoli su broadcast/multicast
e Beej's Guide to Network Programming: reference pratica

e Python socket documentation: API dettagliata

Progetti Open Source da Studiare

¢ Avahi: implementazione mDNS Linux
e Bonjour: implementazione Apple
e Syncthing: discovery P2P avanzato

e BitTorrent DHT: distributed hash table per discovery

Conclusioni e Best Practices

Decision Tree Finale

Devo implementare service discovery?

F— Scopo didattico?

| | si - UDP Broadcast (insegna networking)
| L No !

F— Ambiente controllato (lab/ufficio)?

| F si - UDP Broadcast (veloce e semplice)
| L No !

F— Firewall bloccano broadcast?

| F— Si - Scansione Subnet (se < 100 host)
| L No - UDP Broadcast

F— Necessario attraversare router?

| b si - File Condiviso o Server Registry
| L No - UDP Broadcast

F— Prodotto commerciale?

| L si - mDNS/Zeroconf (standard)

L Prototipo rapido interno?

L si . File Condiviso (semplicissimo)

Checklist Implementazione

Prima di Iniziare

. Definire requisiti: velocita vs affidabilita
. Analizzare ambiente di rete target

. Verificare policy firewall

. Decidere se cross-subnet necessario
. Valutare competenze team

Durante Sviluppo

. Implementare timeout appropriati
. Gestire eccezioni di rete

. Aggiungere logging dettagliato

. Testare con Wireshark

o Validare su reti diverse

Prima del Deploy

0 N O g A~ WO N -

def

Test con firewall attivo

Test con antivirus attivo
Misurare performance reali
Documentare requisiti di rete

Preparare troubleshooting guide

Errori Comuni da Evitare

. Timeout troppo brevi: miss dei server su reti lente

. Nessun fallback: discovery fallisce, app inutilizzabile

. Mancanza logging: debugging impossibile

. Ignorare IPv6: sempre piu comune

. Hardcoded subnet /24: reti diverse usano /16, /22, ecc.
. Nessuna autenticazione: rischi di sicurezza

. Broadcasting eccessivo: congestione di rete

. Race conditions: multipli server, nessuna sincronizzazione

Pattern Avanzati

Hybrid Approach (Raccomandato per Produzione)

discover server robust (self):
1. Prova cache locale
if server := self.try cache():

return server

2. Prova UDP broadcast (veloce)
if server := self.udp discovery(timeout=2):
self.cache server (server)

return server

3. Fallback a scansione (affidabile)
if server := self.subnet scan(max workers=30):
self.cache server (server)

return server

4. Fallback manuale

return self.manual input ()

Service Registry Pattern

Server centrale mantiene lista servizi
class ServiceRegistry:
def register(self, service name, ip, port, ttl=300):
self.services[service name] = ({
'ip': ip,
'port': port,

'expires': time.time () + ttl

def discover (self, service name) :
if service name in self.services:
if time.time() < self.services[service name] ['expires']:
return self.services[service name]

return None

Sicurezza: Considerazioni Critiche

Autenticazione Discovery

import hmac

import hashlib

SECRET KEY = b'shared-secret-key'

Server
def authenticate response(self, message):
signature = hmac.new (SECRET KEY, message.encode (), hashlib.sha256) .hexdigest()

return f"{message}|{signature}"

Client
def verify response(self, response):
message, signature = response.rsplit('|', 1)
expected = hmac.new (SECRET KEY, message.encode (), hashlib.sha256) .hexdigest ()

return hmac.compare digest (signature, expected)

Rate Limiting

from collections import defaultdict

import time

class RatelLimiter:
def init (self, max requests=5, window=60) :
self.requests = defaultdict (list)
self.max requests = max requests

self.window = window

def allow request(self, ip):
now = time.time ()
Rimuovi richieste vecchie
self.requests[ip] = [t for t in self.requests[ip]

if now - t < self.window]

if len(self.requests[ip]) < self.max requests:
self.requests[ip] .append (now)
return True

return False

Riferimenti e Risorse

Standard e RFC

e RFC 6762: Multicast DNS
e RFC 2782: DNS SRV Records
e RFC 919: Broadcasting Internet Datagrams

Libri Consigliati

¢ "Unix Network Programming" - W. Richard Stevens
e "Computer Networks" - Andrew S. Tanenborough

o "Effective Python" - Brett Slatkin (per threading)

Documentazione Online

e Python socket module: https://docs.python.org/3/library/socket.html

(https://docs.python.org/3/library/socket.html)

e Python ipaddress module: https://docs.python.org/3/library/ipaddress.html

(https://docs.python.org/3/library/ipaddress.html)

o Zeroconf documentation: https://python-zeroconf.readthedocs.io/ (https://python-zeroconf.readthedocs.io/)

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/ipaddress.html
https://python-zeroconf.readthedocs.io/

Tools e Software

o Wireshark: https://www.wireshark.org/ (https://www.wireshark.org/)

e nmap: https://nmap.org/ (https://nmap.org/)

e Avahi: https://www.avahi.org/ (https://www.avahi.org/)

Appendice: Codice Completo
Implementazioni

A. UDP Broadcast Discovery (Versione Estesa)

Vedi artifact chat_server_discovery

Vedi artifact chat client discovery

B. Scansione Subnet (Versione Estesa)

Vedi artifact chat client subnet scan

C. Esempio File Condiviso

https://www.wireshark.org/
https://nmap.org/
https://www.avahi.org/

server config writer.py
import json
import socket

from datetime import datetime

class ConfigFileServer:
def _ init (self, config path='\\\\shared\\server config.json'):
self.config path = config path

self.port = 5000

def register(self):
config = {
'ip': self.get local ip(),
'port': self.port,
'hostname': socket.gethostname(),
'timestamp': datetime.now() .isoformat (),

'status': 'active'

try:
with open(self.config path, 'w') as f:
json.dump (config, £, indent=2)
print (f"Server registrato: {config}")
except Exception as e:

print (f"Errore registrazione: {e}")

def get local ip(self):
s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
s.connect (("8.8.8.8", 80))
ip = s.getsockname () [0]
s.close ()

return ip

client config reader.py
import json

from datetime import datetime, timedelta

class ConfigFileClient:
def _ init (self, config path='\\\\shared\\server config.json'):

self.config path = config path

def discover server(self, max age minutes=5):

try:

with open(self.config path, 'r') as f:

config = json.load(f)

Verifica che il config non sia troppo vecchio

timestamp = datetime.fromisoformat (config['timestamp'])

age = datetime.now() - timestamp

if age < timedelta (minutes=max age minutes) :
print (f"Server trovato: {config['ip']}:{config['port']}")
return config['ip'], config['port']
else:
print (f"Config obsoleto (eta: {age})")
return None, None
except FileNotFoundError:
print ("File di configurazione non trovato")
return None, None
except Exception as e:
print (f"Errore lettura config: {e}")

return None, None

D. Esempio mDNS/Zeroconf Base

server mdns.py
from zeroconf import Zeroconf, ServicelInfo
import socket

import time

class MDNSServer:
def init (self, port=5000):
self.port = port
self.zeroconf = None

self.service info = None

def register service(self):

self.zeroconf = Zeroconf ()

Definizione servizio
service type = " chatserver. tcp.local."

service name = f"MyChatServer.{service type}"

Ottieni IP locale

local ip = self.get local ip()

Crea service info
self.service info = ServicelInfo(
service type,
service name,
addresses=[socket.inet aton(local ip)],
port=self.port,
properties={
b'version': b'1.0"',
b'description': b'Python Chat Server'
}y

server=f"{socket.gethostname () }.local."

Registra
self.zeroconf.register service(self.service info)
print (f"Servizio mDNS registrato: {service name}")

print (f"IP: {local ip}, Porta: {self.port}")

def unregister service(self):
if self.zeroconf and self.service info:
self.zeroconf.unregister service(self.service info)

self.zeroconf.close ()

print ("Servizio mDNS deregistrato")

def get local ip(self):
s = socket.socket (socket.AF INET, socket.SOCK DGRAM)
s.connect (("8.8.8.8", 80))
ip = s.getsockname () [0]
s.close ()

return ip

client mdns.py
from zeroconf import Zeroconf, ServiceBrowser, ServiceStateChange
import socket

import time

class MDNSListener:
def init (self):
self.server found = False
self.server_ ip = None

self.server port = None

def on service state change(self, zeroconf, service type, name, state change):
if state change is ServiceStateChange.Added:
info = zeroconf.get service info(service type, name)
if info:
self.server ip = socket.inet ntoa(info.addresses[0])
self.server port = info.port
self.server found = True

print (f"Server trovato: {self.server ip}:{self.server port}")

class MDNSClient:
def discover server (self, timeout=5):
zeroconf = Zeroconf ()

listener = MDNSListener ()

browser = ServiceBrowser (
zeroconf,
" chatserver. tcp.local.",

handlers=[listener.on_ service state change]

Attendi discovery
start time = time.time ()
while not listener.server found and (time.time() - start time) < timeout:

time.sleep(0.1)

zeroconf.close()

if listener.server found:
return listener.server ip, listener.server port

return None, None

Glossario Tecnico

Broadcast: Invio di un messaggio a tutti i dispositivi in una subnet
Multicast: Invio a un gruppo specifico di destinatari

Unicast: Invio point-to-point a un singolo destinatario

Service Discovery: Meccanismo per trovare servizi in rete automaticamente
mDNS: Multicast DNS, protocollo per discovery locale

Subnet: Sottorete, divisione logica di una rete IP

CIDR: Classless Inter-Domain Routing, notazione per subnet (es. /24)

Port Scanning: Tecnica per identificare porte aperte su un host

TTL: Time To Live, durata di validita di un dato

Zeroconf: Zero Configuration Networking, set di tecnologie per auto-config

Documento versione 1.0
Ultima modifica: Gennaio 2026

Autore: Sistema di documentazione tecnica

