
Guida Completa: Service
Discovery in Reti Locali

Indice
1. Introduzione al problema

2. Soluzione 1: UDP Broadcast Discovery

3. Soluzione 2: Scansione Diretta della Subnet

4. Soluzione 3: File di Configurazione Condiviso

5. Soluzione 4: mDNS/Zeroconf

6. Confronto Comparativo

7. Raccomandazioni per Contesto Didattico

Introduzione al Problema
Il Problema

In un'applicazione client-server tradizionale, il client deve conoscere a priori l'indirizzo IP del server. Questo approccio

presenta diversi limiti:

Rigidità: ogni volta che il server cambia macchina, bisogna modificare il codice client

Manutenzione: in ambienti con più server, gestire gli IP diventa complesso

Scalabilità: difficile distribuire l'applicazione su diverse reti

Usabilità: l'utente finale deve conoscere dettagli tecnici (IP, porta)

La Soluzione: Service Discovery
Il Service Discovery è un meccanismo che permette ai client di trovare automaticamente i servizi disponibili sulla rete

senza configurazione manuale.

Requisiti base:

Automatico (nessun intervento umano)

Affidabile (deve trovare il server se esiste)

Veloce (tempi di discovery ragionevoli)

Semplice da implementare

Soluzione 1: UDP Broadcast Discovery
Concetto

Il client invia un messaggio broadcast UDP sulla rete locale. Tutti i dispositivi ricevono il messaggio, ma solo il server

risponde identificandosi.

Architettura

Client Network Server

 | | |

 |-- BROADCAST UDP -------->|------------------------->|

 | "DISCOVER_SERVER" | |

 | | |

 |<-------------------------|<------ UNICAST UDP ------|

 | | "SERVER:IP:PORT" |

 | | |

 |====== TCP CONNECTION =============================>|

 | | |

Implementazione Dettagliata

Server - Servizio Discovery

def discovery_service(self):

 # Socket UDP per ricevere broadcast

 discovery_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 discovery_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 # Bind su TUTTE le interfacce di rete

 discovery_socket.bind(('', self.discovery_port))

 while self.running:

 data, addr = discovery_socket.recvfrom(1024)

 message = data.decode('utf-8')

 if message == "DISCOVER_CHAT_SERVER":

 # Risponde con IP e porta del servizio chat

 response = f"CHAT_SERVER:{self.get_local_ip()}:{self.chat_port}"

 discovery_socket.sendto(response.encode('utf-8'), addr)

Punti chiave:

SO_REUSEADDR: permette di riutilizzare la porta anche se non completamente chiusa

bind(('', port)): ascolta su tutte le interfacce di rete (0.0.0.0)

Risposta unicast: torna solo al client richiedente

Client - Discovery

def discover_server(self, timeout=5):

 discovery_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 # Abilita il broadcast

 discovery_socket.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)

 discovery_socket.settimeout(timeout)

 # Invia broadcast a TUTTI i dispositivi nella subnet

 discovery_socket.sendto(

 "DISCOVER_CHAT_SERVER".encode('utf-8'),

 ('<broadcast>', self.discovery_port)

)

 # Attende risposta

 data, addr = discovery_socket.recvfrom(1024)

 # Parsing della risposta...

Punti chiave:

SO_BROADCAST: necessario per inviare pacchetti broadcast

<broadcast>: indirizzo speciale 255.255.255.255

settimeout(): evita attese infinite se nessun server risponde

Pro e Contro

� Vantaggi

1. Velocità eccezionale

Discovery quasi istantaneo (< 1 secondo)

Un solo pacchetto broadcast necessario

Nessuna iterazione su IP multipli

2. Efficienza di rete

Traffico minimo generato

Un solo pacchetto broadcast + una risposta unicast

Non sovraccarica la rete

3. Scalabilità

Funziona con qualsiasi numero di dispositivi

Costo computazionale costante O(1)

Non dipende dalla dimensione della subnet

4. Semplicità concettuale

Logica diretta e intuitiva

Facile debugging con Wireshark

Pattern standard nell'industria

5. Supporto multipli server

Più server possono rispondere contemporaneamente

Il client può scegliere o usare tutti i server trovati

Utile per load balancing o fault tolerance

6. Didattico

Insegna la differenza tra UDP e TCP

Mostra l'uso del broadcast

Introduce concetti di service discovery

� Svantaggi

1. Limitazioni di rete

Non attraversa i router: funziona solo nella subnet locale (broadcast domain)

Segmentazione VLAN: non funziona tra VLAN diverse

VPN: problemi con alcune configurazioni VPN

2. Firewall e sicurezza

Molti firewall bloccano broadcast UDP per default

Windows Firewall può richiedere regole esplicite

Alcuni antivirus segnalano come sospetto

3. Affidabilità UDP

UDP non garantisce consegna (unreliable protocol)

Pacchetti possono essere persi senza notifica

Nessun acknowledgment o retry automatico

4. Potenziali collisioni

Se più server rispondono simultaneamente, possibili conflitti

Necessita logica di gestione risposte multiple

Possibile confusione con servizi sulla stessa porta

5. Congestione broadcast

In reti molto grandi, il broadcast aggiunge traffico

Ogni dispositivo deve processare il pacchetto

Switch possono limitare broadcast rate

6. Problemi con Wi-Fi

Access Point possono filtrare broadcast

Reti guest spesso bloccano broadcast tra client

Modalità risparmio energetico può perdere pacchetti

Quando Usare UDP Broadcast
� Ideale per:

Reti locali piccole/medie (< 254 host)

Ambienti controllati (lab, ufficio)

Applicazioni dove velocità è prioritaria

Prototipi e proof of concept

Contesto didattico (insegna networking)

� Evitare quando:

Attraversamento router necessario

Reti enterprise con policy rigide

Ambienti con firewall restrittivi

Necessità di garanzie di consegna

Varianti e Ottimizzazioni

Multicast invece di Broadcast

Server

MCAST_GRP = '224.1.1.1'

sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP,

 socket.inet_aton(MCAST_GRP) + socket.inet_aton('0.0.0.0'))

Client

sock.sendto(message, (MCAST_GRP, port))

Vantaggi del Multicast:

Più efficiente del broadcast (solo interessati ricevono)

Può attraversare router se configurato (con IGMP)

Minore impatto sulla rete

Svantaggi:

Configurazione più complessa

Non sempre supportato da router consumer

Richiede setup IGMP

Retry e Timeout Adattivo

def discover_server_with_retry(self, max_attempts=3):

 for attempt in range(max_attempts):

 timeout = 2 * (attempt + 1) # Timeout crescente

 if self.discover_server(timeout):

 return True

 return False

Autenticazione e Sicurezza

import hmac

import hashlib

Server

def verify_request(self, data, shared_secret):

 message, signature = data.split('|')

 expected = hmac.new(shared_secret, message.encode(), hashlib.sha256).hexdigest()

 return hmac.compare_digest(signature, expected)

Soluzione 2: Scansione Diretta della
Subnet
Concetto

Il client determina la subnet locale (es. 192.168.1.0/24) e tenta di connettersi sequenzialmente o in parallelo a ogni IP

sulla porta del server.

Architettura

Client Network

 |

 |-- Calcola subnet: 192.168.1.0/24

 |

 |-- TCP SYN --> 192.168.1.1:5000 (timeout/refused)

 |-- TCP SYN --> 192.168.1.2:5000 (timeout/refused)

 |-- TCP SYN --> 192.168.1.3:5000 (SUCCESS!) ✓

 |

 |====== Connessione stabilita ======>

Implementazione Dettagliata

Determinazione Subnet

def get_local_network(self):

 # Ottiene IP locale

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect(("8.8.8.8", 80)) # Non invia realmente dati

 local_ip = s.getsockname()[0]

 s.close()

 # Crea oggetto rete con subnet /24

 network = ipaddress.IPv4Network(f"{local_ip}/24", strict=False)

 # Es: 192.168.1.100 -> 192.168.1.0/24

 return network

Punti chiave:

Trucco con connect() a 8.8.8.8: determina quale interfaccia userebbe il sistema

ipaddress.IPv4Network: modulo standard Python per gestione IP

strict=False: accetta IP host e calcola network address

/24: subnet mask 255.255.255.0 (254 host utilizzabili)

Scansione con Threading

def scan_network(self, max_workers=50):

 network = self.get_local_network()

 found_servers = []

 with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:

 # Crea un future per ogni IP

 future_to_ip = {

 executor.submit(self.check_server, ip): ip

 for ip in network.hosts()

 }

 # Processa risultati man mano che arrivano

 for future in concurrent.futures.as_completed(future_to_ip):

 ip = future_to_ip[future]

 if future.result():

 found_servers.append(str(ip))

 return found_servers

Punti chiave:

ThreadPoolExecutor: pool di thread per esecuzione parallela

max_workers=50: numero massimo thread simultanei (bilanciamento carico/velocità)

as_completed(): processa risultati appena disponibili (non attende tutti)

network.hosts(): esclude network address e broadcast (x.x.x.0 e x.x.x.255)

Verifica Server

def check_server(self, ip, timeout=0.5):

 try:

 test_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 test_socket.settimeout(timeout)

 # connect_ex() ritorna 0 se successo, errno altrimenti

 result = test_socket.connect_ex((str(ip), self.server_port))

 test_socket.close()

 return result == 0 # True se connessione riuscita

 except:

 return False

Punti chiave:

connect_ex(): versione non-blocking di connect() che ritorna errno

Timeout breve (0.5s): bilancia velocità e affidabilità

Gestione eccezioni: host irraggiungibili possono causare exception

Pro e Contro

� Vantaggi

1. Affidabilità massima

Funziona sempre se il server è raggiungibile via TCP

Non dipende da broadcast o multicast

Nessuna dipendenza da configurazioni di rete speciali

2. Attraversamento ostacoli

Funziona con firewall che bloccano broadcast

Compatibile con reti Wi-Fi guest (isolamento client)

Nessun problema con policy di rete restrittive

3. Compatibilità universale

Funziona su qualsiasi rete TCP/IP

Nessuna configurazione speciale richiesta

Supportato da tutti i sistemi operativi

4. Debugging semplice

Facile vedere cosa sta succedendo

Log chiari degli IP testati

Identificazione rapida di problemi di rete

5. Nessuna dipendenza da UDP

Elimina problemi di affidabilità UDP

Un solo protocollo da gestire (TCP)

Stack networking più semplice

6. Flessibilità

Può scansionare range personalizzati

Supporta subnet non standard

Adattabile a topologie complesse

� Svantaggi

1. Lentezza significativa

Con subnet /24: ~254 IP da testare

Anche con parallelismo: 5-20 secondi tipici

Timeout cumulativo può essere alto

Esperienza utente negativa per discovery lento

2. Carico di rete elevato

Genera 254+ connessioni TCP (SYN packets)

Ogni tentativo = handshake TCP parziale

Sovraccarico su switch e router

Può saturare tabelle di connessione NAT

3. Rilevamento sicurezza

IDS/IPS possono segnalare come port scan

Antivirus potrebbero bloccare

Log di sicurezza pieni di tentativi connessione

Possibile blocco temporaneo IP da fail2ban

4. Scalabilità problematica

Subnet /16 (65k host): impraticabile

Tempo cresce linearmente con dimensione rete

Consumo risorse (thread/memoria) elevato

Difficile parallelizzare oltre certi limiti

5. Falsi positivi

Altri servizi sulla stessa porta possono rispondere

Necessita verifica aggiuntiva (handshake applicativo)

Confusione con servizi non correlati

6. Problemi con subnet variabili

Assume sempre /24 (limite arbitrario)

Reti con /16 o /8 non gestibili

Subnet /25 o /26 funzionano ma rare

Calcolo automatico subnet mask complesso

7. Timeout management critico

Timeout troppo breve: miss del server

Timeout troppo lungo: scansione lentissima

Condizioni di rete variabili difficili da gestire

Necessità di tuning per ogni ambiente

Quando Usare Scansione Subnet
� Ideale per:

Ambienti con firewall restrittivi

Reti Wi-Fi guest o isolate

Quando broadcast non funziona

Subnet molto piccole (< 50 host)

Necessità di affidabilità assoluta

Scopo didattico: insegnare port scanning e threading

� Evitare quando:

Reti grandi (> 254 host)

Velocità è critica

Policy di sicurezza rigide (IDS attivi)

Risorse limitate (embedded systems)

Discovery frequenti necessari

Ottimizzazioni Avanzate

Scansione Intelligente con Priorità

def smart_scan(self):

 # Prova prima gli IP più probabili

 likely_ips = [

 f"{base}.1", # Gateway/server comuni

 f"{base}.2",

 f"{base}.10",

 f"{base}.100",

 f"{base}.254"

]

 for ip in likely_ips:

 if self.check_server(ip):

 return ip

 # Poi scansione completa

 return self.full_scan()

Scansione con Backoff Esponenziale

def adaptive_scan(self):

 batch_size = 10

 while hosts_remaining:

 batch = get_next_batch(batch_size)

 results = scan_batch(batch, timeout=current_timeout)

 if successful_rate > 0.8:

 timeout *= 0.9 # Riduci timeout

 batch_size *= 2 # Aumenta parallelismo

 else:

 timeout *= 1.2 # Aumenta timeout

 batch_size //= 2 # Riduci parallelismo

Cache dei Risultati

import json

from datetime import datetime, timedelta

def cache_server_location(self, ip):

 cache = {

 'ip': ip,

 'timestamp': datetime.now().isoformat(),

 'ttl': 3600 # 1 ora

 }

 with open('server_cache.json', 'w') as f:

 json.dump(cache, f)

def try_cached_server(self):

 try:

 with open('server_cache.json', 'r') as f:

 cache = json.load(f)

 cached_time = datetime.fromisoformat(cache['timestamp'])

 if datetime.now() - cached_time < timedelta(seconds=cache['ttl']):

 if self.check_server(cache['ip'], timeout=1):

 return cache['ip']

 except:

 pass

 return None

Scansione Multi-Port

def scan_multiple_ports(self, ip, ports=[5000, 5001, 5002]):

 for port in ports:

 if self.check_server(ip, port):

 return (ip, port)

 return None

Soluzione 3: File di Configurazione
Condiviso

Concetto
Server e client accedono a un file condiviso (su rete o cloud) dove il server scrive il proprio IP all'avvio e il client lo legge.

Implementazione

Server - Scrittura Configurazione

import json

from datetime import datetime

def register_server(self):

 config = {

 'server_ip': self.get_local_ip(),

 'server_port': self.chat_port,

 'hostname': socket.gethostname(),

 'last_update': datetime.now().isoformat(),

 'status': 'online'

 }

 # Opzione 1: File di rete

 with open('//shared-drive/config/server.json', 'w') as f:

 json.dump(config, f)

 # Opzione 2: Cloud storage (es. Google Drive API)

 # upload_to_drive('server.json', config)

 # Opzione 3: Database semplice

 # save_to_sqlite('servers.db', config)

Client - Lettura Configurazione

def discover_server_from_config(self):

 try:

 with open('//shared-drive/config/server.json', 'r') as f:

 config = json.load(f)

 # Verifica se il file non è troppo vecchio

 last_update = datetime.fromisoformat(config['last_update'])

 if datetime.now() - last_update < timedelta(minutes=5):

 return config['server_ip'], config['server_port']

 except:

 return None, None

Pro e Contro

� Vantaggi

1. Semplicità estrema

Implementazione banale (poche righe)

Nessun networking complesso

Debugging immediato (leggi il file)

2. Affidabilità

Non dipende da configurazioni di rete

Funziona attraverso subnet diverse

Nessun problema con firewall

3. Persistenza

Informazione sopravvive a restart

Storico disponibile

Audit trail automatico

4. Flessibilità

Può contenere metadati aggiuntivi

Supporto multipli server facilmente

Configurazione avanzata possibile

5. Nessun traffico di rete

Zero overhead di discovery

Non impatta performance di rete

Scalabile a qualsiasi dimensione

� Svantaggi

1. Dipendenza esterna critica

Richiede risorsa condivisa sempre accessibile

Single point of failure

Se condivisione non disponibile, sistema bloccato

2. Problemi di sincronizzazione

Race conditions possibili

Stale data (informazioni obsolete)

Necessita meccanismi di lock

3. Sicurezza

File accessibile da chiunque (rischio manomissione)

Necessita permessi condivisione corretti

Possibili information disclosure

4. Performance

Latenza di I/O file system

Overhead di rete per accesso condivisione

Possibili colli di bottiglia con molti client

5. Setup complesso

Richiede configurazione infrastruttura

Mappatura drive/mount necessaria

Problemi di portabilità tra OS

6. Non scalabile enterprise

Non adatto a deployment grandi

Gestione complicata in cloud

Problemi con containerizzazione

Quando Usare File Condiviso
� Ideale per:

Ambienti con NAS o file server esistente

Reti enterprise con Active Directory

Sviluppo/test interno

Pochi client (<10)

Prototipazione rapida

� Evitare quando:

Produzione senza infrastruttura condivisa

Deployment cloud-native

Alta disponibilità richiesta

Molti client concorrenti

Varianti

Database Centralizzato

import sqlite3

def register_to_db(self):

 conn = sqlite3.connect('//server/db/services.db')

 cursor = conn.cursor()

 cursor.execute('''

 INSERT OR REPLACE INTO servers

 (service_name, ip, port, last_seen)

 VALUES (?, ?, ?, ?)

 ''', ('chat_server', self.ip, self.port, datetime.now()))

 conn.commit()

 conn.close()

Redis/Key-Value Store

import redis

def register_to_redis(self):

 r = redis.Redis(host='shared-server', port=6379)

 r.setex('chat_server:location',

 300, # TTL 5 minuti

 f"{self.ip}:{self.port}")

Soluzione 4: mDNS/Zeroconf
Concetto

Protocollo standard (RFC 6762) per service discovery senza configurazione. Usato da Bonjour (Apple), Avahi (Linux), e

simili.

Implementazione con Zeroconf

Server

from zeroconf import Zeroconf, ServiceInfo

import socket

def register_mdns_service(self):

 zeroconf = Zeroconf()

 service_info = ServiceInfo(

 "_chatserver._tcp.local.", # Tipo servizio

 "MyChatServer._chatserver._tcp.local.", # Nome istanza

 addresses=[socket.inet_aton(self.get_local_ip())],

 port=self.chat_port,

 properties={

 'version': '1.0',

 'max_users': '10'

 }

)

 zeroconf.register_service(service_info)

 return zeroconf

Client

from zeroconf import Zeroconf, ServiceBrowser

class ChatServerListener:

 def add_service(self, zeroconf, type, name):

 info = zeroconf.get_service_info(type, name)

 if info:

 address = socket.inet_ntoa(info.addresses[0])

 port = info.port

 print(f"Server trovato: {address}:{port}")

 self.server_found(address, port)

def discover_mdns_server(self):

 zeroconf = Zeroconf()

 listener = ChatServerListener()

 browser = ServiceBrowser(zeroconf, "_chatserver._tcp.local.", listener)

 # Attende discovery...

Pro e Contro

� Vantaggi

1. Standard industriale

Protocollo RFC ufficiale

Supporto nativo in molti OS

Ampiamente testato e affidabile

2. Zero configuration

Nessun setup richiesto

Plug and play reale

User-friendly

3. Feature-rich

Metadati servizio inclusi

Supporto multipli servizi

TXT records per info aggiuntive

Service browsing

4. Efficienza

Usa multicast intelligente

Cache distribuita

Minimo traffico di rete

5. Interoperabilità

Funziona con servizi esistenti

Integrazione con Bonjour/Avahi

Standard cross-platform

� Svantaggi

1. Dipendenze esterne

Richiede libreria zeroconf o python-zeroconf

Installazione dipendenze su ogni client

Potenziali problemi di versioning

2. Complessità

Curva di apprendimento ripida

Documentazione dispersa

Debugging complicato

3. Limitazioni di rete

Non attraversa router (come broadcast)

Problemi con alcune configurazioni firewall

Richiede multicast funzionante

4. Overhead

Libreria pesante per uso semplice

Consumo memoria maggiore

Startup time più lungo

5. Non didattico

Black box per studenti

Nasconde dettagli implementativi

Poco formativo su networking

Quando Usare mDNS
� Ideale per:

Applicazioni professionali

Prodotti commerciali

Integrazione con ecosistema Apple/Linux

Necessità di standard riconosciuto

Feature avanzate richieste

� Evitare quando:

Scopo didattico (troppo astratto)

Dipendenze non accettabili

Deployment semplificato necessario

Controllo completo richiesto

Confronto Comparativo
Tabella Comparativa Completa

Criterio UDP
Broadcast

Scansione
Subnet

File
Condiviso mDNS/Zeroconf

Velocità ����� (<1s) �� (5-20s) ���� (1-2s) ���� (1-3s)
Affidabilità ��� ����� ��� ����
Semplicità Codice ���� ��� ����� ��
Efficienza Rete ����� �� ����� ����
Compatibilità
Firewall �� ����� ����� ���

Scalabilità ����� �� ��� ����
Zero Config ����� ����� �� �����
Valore Didattico ����� ���� �� ��
Prod-Ready ��� ��� �� �����
Setup Richiesto Nessuno Nessuno Medio Librerie
Dipendenze Nessuna Nessuna Infrastruttura python-zeroconf
Cross-Subnet � No � No � Sì � No
Sicurezza IDS � Ok ⚠ Port scan � Ok � Ok
Costo CPU Basso Alto Basso Medio
Costo Memoria Basso Medio Basso Alto

Metriche Prestazionali

Tempo di Discovery (Media)

Subnet /24 (254 host):

UDP Broadcast: 0.5s ████

Scansione (seq): 127s ██

Scansione (//50): 12s ████████████

File Condiviso: 1.2s ██████

mDNS: 2.1s ██████████

Traffico di Rete Generato

UDP Broadcast: ~500 bytes ▌

Scansione /24: ~15 KB ████████████████████

File Condiviso: 0 bytes (I/O file)

mDNS: ~2 KB ████

False Positive Rate

UDP Broadcast: < 1% (protocollo custom)

Scansione: 5-10% (altri servizi su stessa porta)

File Condiviso: < 1% (lettura diretta)

mDNS: < 1% (service type specifico)

Matrice Decisionale

Caratteristiche Ambiente → Soluzione Raccomandata

┌─────────────────────────┬──────────────────────────────┐

│ Rete locale piccola │ UDP Broadcast � │

│ Firewall permissivi │ │

│ Scopo didattico │ │

└─────────────────────────┴──────────────────────────────┘

┌─────────────────────────┬──────────────────────────────┐

│ Firewall restrittivi │ Scansione Subnet │

│ Wi-Fi guest │ (solo se < 50 host) │

│ Broadcast non funziona │ │

└─────────────────────────┴──────────────────────────────┘

┌─────────────────────────┬──────────────────────────────┐

│ NAS/file server esiste │ File Condiviso │

│ Ambiente corporate │ (prototipi e test) │

│ Pochi client statici │ │

└─────────────────────────┴──────────────────────────────┘

┌─────────────────────────┬──────────────────────────────┐

│ Prodotto commerciale │ mDNS/Zeroconf � │

│ Standard richiesto │ │

│ Integrazione Bonjour │ │

└─────────────────────────┴──────────────────────────────┘

Raccomandazioni per Contesto Didattico
Per Corsi di Sistemi e Reti

Approccio Pedagogico Progressivo

Lezione 1: Concetti Base

Problema: hardcoded IP addresses

Introduzione al service discovery

Soluzione manuale (file configurazione)

Lezione 2: UDP Broadcast � RACCOMANDATO

Differenza UDP vs TCP

Concetto di broadcast

Implementazione pratica

Debug con Wireshark

Lezione 3: Scansione e Threading

Port scanning etico

Concurrency in Python

ThreadPoolExecutor

Ottimizzazioni performance

Lezione 4: Protocolli Standard

Introduzione mDNS

Analisi RFC

Confronto soluzioni custom vs standard

Lab Pratico Suggerito

Esercitazione Completa (4 ore)

Parte 1: Implementazione Base (90 min)

1. Implementare chat server/client basico con IP hardcoded

2. Identificare limiti e problemi

3. Discussione: quali soluzioni esistono?

Parte 2: UDP Broadcast (90 min)

1. Aggiungere discovery service al server

2. Implementare discovery sul client

3. Testing in rete locale

4. Cattura traffico con Wireshark

5. Analisi pacchetti UDP

Parte 3: Problematiche Reali (45 min)

1. Simulare firewall: bloccare UDP broadcast

2. Tentare discovery → fallisce

3. Implementare fallback a scansione subnet

4. Confrontare prestazioni

Parte 4: Discussione e Ottimizzazioni (45 min)

1. Analisi pro/contro di ogni soluzione

2. Quando usare quale approccio

3. Sicurezza: autenticazione discovery

4. Progetti avanzati: load balancing, failover

Progetti Studente Avanzati

Livello Intermedio

Hybrid Discovery: prova broadcast, poi scansione come fallback

Multi-Server Load Balancer: client sceglie server meno carico

Server Heartbeat: verifica periodica che server sia ancora attivo

Encrypted Discovery: autenticazione tramite challenge-response

Livello Avanzato

Service Registry: server centrale che traccia tutti i servizi

Geo-Discovery: preferenza server geograficamente vicini

Fault Tolerance: failover automatico se server primario cade

Cross-Subnet Discovery: relay nodes per attraversare router

Valutazione e Criteri

Rubrica Valutazione Progetto

Criterio Punti Descrizione
Funzionalità 30 Discovery funziona in condizioni normali
Robustezza 20 Gestione errori e timeout
Performance 15 Velocità discovery accettabile
Codice 15 Leggibilità, commenti, struttura
Documentazione 10 README, diagrammi, esempi
Testing 10 Test cases e validazione

Domande di Verifica Comprensione

1. Concettuali

Perché UDP per discovery e TCP per chat?

Cosa succede se due server rispondono al broadcast?

Quali problemi causa il broadcast in reti grandi?

2. Pratiche

Come modificheresti il codice per supportare IPv6?

Come implementeresti retry con backoff esponenziale?

Come garantiresti che solo server autorizzati rispondano?

3. Analisi

Confronta overhead di broadcast vs scansione in subnet /16

Stima il tempo di scansione con 1000 host e timeout 0.5s

Quale soluzione useresti per IoT con 100+ dispositivi?

Risorse Didattiche Aggiuntive

Tools Consigliati

Wireshark: analisi traffico di rete (broadcast, multicast)

nmap: studio port scanning professionale

netcat: testing manuale connessioni TCP/UDP

iperf: misurazione performance di rete

Approfondimenti

RFC 6762 (mDNS): lettura standard ufficiale

Stevens "Unix Network Programming": capitoli su broadcast/multicast

Beej's Guide to Network Programming: reference pratica

Python socket documentation: API dettagliata

Progetti Open Source da Studiare

Avahi: implementazione mDNS Linux

Bonjour: implementazione Apple

Syncthing: discovery P2P avanzato

BitTorrent DHT: distributed hash table per discovery

Conclusioni e Best Practices
Decision Tree Finale

Devo implementare service discovery?

│

├─ Scopo didattico?

│ ├─ Sì → UDP Broadcast (insegna networking)

│ └─ No ↓

│

├─ Ambiente controllato (lab/ufficio)?

│ ├─ Sì → UDP Broadcast (veloce e semplice)

│ └─ No ↓

│

├─ Firewall bloccano broadcast?

│ ├─ Sì → Scansione Subnet (se < 100 host)

│ └─ No → UDP Broadcast

│

├─ Necessario attraversare router?

│ ├─ Sì → File Condiviso o Server Registry

│ └─ No → UDP Broadcast

│

├─ Prodotto commerciale?

│ └─ Sì → mDNS/Zeroconf (standard)

│

└─ Prototipo rapido interno?

 └─ Sì → File Condiviso (semplicissimo)

Checklist Implementazione

Prima di Iniziare

 Definire requisiti: velocità vs affidabilità

 Analizzare ambiente di rete target

 Verificare policy firewall

 Decidere se cross-subnet necessario

 Valutare competenze team

Durante Sviluppo

 Implementare timeout appropriati

 Gestire eccezioni di rete

 Aggiungere logging dettagliato

 Testare con Wireshark

 Validare su reti diverse

Prima del Deploy

 Test con firewall attivo

 Test con antivirus attivo

 Misurare performance reali

 Documentare requisiti di rete

 Preparare troubleshooting guide

Errori Comuni da Evitare
1. Timeout troppo brevi: miss dei server su reti lente

2. Nessun fallback: discovery fallisce, app inutilizzabile

3. Mancanza logging: debugging impossibile

4. Ignorare IPv6: sempre più comune

5. Hardcoded subnet /24: reti diverse usano /16, /22, ecc.

6. Nessuna autenticazione: rischi di sicurezza

7. Broadcasting eccessivo: congestione di rete

8. Race conditions: multipli server, nessuna sincronizzazione

Pattern Avanzati

Hybrid Approach (Raccomandato per Produzione)

def discover_server_robust(self):

 # 1. Prova cache locale

 if server := self.try_cache():

 return server

 # 2. Prova UDP broadcast (veloce)

 if server := self.udp_discovery(timeout=2):

 self.cache_server(server)

 return server

 # 3. Fallback a scansione (affidabile)

 if server := self.subnet_scan(max_workers=30):

 self.cache_server(server)

 return server

 # 4. Fallback manuale

 return self.manual_input()

Service Registry Pattern

Server centrale mantiene lista servizi

class ServiceRegistry:

 def register(self, service_name, ip, port, ttl=300):

 self.services[service_name] = {

 'ip': ip,

 'port': port,

 'expires': time.time() + ttl

 }

 def discover(self, service_name):

 if service_name in self.services:

 if time.time() < self.services[service_name]['expires']:

 return self.services[service_name]

 return None

Sicurezza: Considerazioni Critiche

Autenticazione Discovery

import hmac

import hashlib

SECRET_KEY = b'shared-secret-key'

Server

def authenticate_response(self, message):

 signature = hmac.new(SECRET_KEY, message.encode(), hashlib.sha256).hexdigest()

 return f"{message}|{signature}"

Client

def verify_response(self, response):

 message, signature = response.rsplit('|', 1)

 expected = hmac.new(SECRET_KEY, message.encode(), hashlib.sha256).hexdigest()

 return hmac.compare_digest(signature, expected)

Rate Limiting

from collections import defaultdict

import time

class RateLimiter:

 def __init__(self, max_requests=5, window=60):

 self.requests = defaultdict(list)

 self.max_requests = max_requests

 self.window = window

 def allow_request(self, ip):

 now = time.time()

 # Rimuovi richieste vecchie

 self.requests[ip] = [t for t in self.requests[ip]

 if now - t < self.window]

 if len(self.requests[ip]) < self.max_requests:

 self.requests[ip].append(now)

 return True

 return False

Riferimenti e Risorse
Standard e RFC

RFC 6762: Multicast DNS

RFC 2782: DNS SRV Records

RFC 919: Broadcasting Internet Datagrams

Libri Consigliati
"Unix Network Programming" - W. Richard Stevens

"Computer Networks" - Andrew S. Tanenborough

"Effective Python" - Brett Slatkin (per threading)

Documentazione Online
Python socket module: https://docs.python.org/3/library/socket.html

(https://docs.python.org/3/library/socket.html)

Python ipaddress module: https://docs.python.org/3/library/ipaddress.html

(https://docs.python.org/3/library/ipaddress.html)

Zeroconf documentation: https://python-zeroconf.readthedocs.io/ (https://python-zeroconf.readthedocs.io/)

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/ipaddress.html
https://python-zeroconf.readthedocs.io/

Tools e Software
Wireshark: https://www.wireshark.org/ (https://www.wireshark.org/)

nmap: https://nmap.org/ (https://nmap.org/)

Avahi: https://www.avahi.org/ (https://www.avahi.org/)

Appendice: Codice Completo
Implementazioni

A. UDP Broadcast Discovery (Versione Estesa)

Vedi artifact chat_server_discovery

Vedi artifact chat_client_discovery

B. Scansione Subnet (Versione Estesa)

Vedi artifact chat_client_subnet_scan

C. Esempio File Condiviso

https://www.wireshark.org/
https://nmap.org/
https://www.avahi.org/

server_config_writer.py

import json

import socket

from datetime import datetime

class ConfigFileServer:

 def __init__(self, config_path='\\\\shared\\server_config.json'):

 self.config_path = config_path

 self.port = 5000

 def register(self):

 config = {

 'ip': self.get_local_ip(),

 'port': self.port,

 'hostname': socket.gethostname(),

 'timestamp': datetime.now().isoformat(),

 'status': 'active'

 }

 try:

 with open(self.config_path, 'w') as f:

 json.dump(config, f, indent=2)

 print(f"Server registrato: {config}")

 except Exception as e:

 print(f"Errore registrazione: {e}")

 def get_local_ip(self):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect(("8.8.8.8", 80))

 ip = s.getsockname()[0]

 s.close()

 return ip

client_config_reader.py

import json

from datetime import datetime, timedelta

class ConfigFileClient:

 def __init__(self, config_path='\\\\shared\\server_config.json'):

 self.config_path = config_path

 def discover_server(self, max_age_minutes=5):

 try:

 with open(self.config_path, 'r') as f:

 config = json.load(f)

 # Verifica che il config non sia troppo vecchio

 timestamp = datetime.fromisoformat(config['timestamp'])

 age = datetime.now() - timestamp

 if age < timedelta(minutes=max_age_minutes):

 print(f"Server trovato: {config['ip']}:{config['port']}")

 return config['ip'], config['port']

 else:

 print(f"Config obsoleto (età: {age})")

 return None, None

 except FileNotFoundError:

 print("File di configurazione non trovato")

 return None, None

 except Exception as e:

 print(f"Errore lettura config: {e}")

 return None, None

D. Esempio mDNS/Zeroconf Base

server_mdns.py

from zeroconf import Zeroconf, ServiceInfo

import socket

import time

class MDNSServer:

 def __init__(self, port=5000):

 self.port = port

 self.zeroconf = None

 self.service_info = None

 def register_service(self):

 self.zeroconf = Zeroconf()

 # Definizione servizio

 service_type = "_chatserver._tcp.local."

 service_name = f"MyChatServer.{service_type}"

 # Ottieni IP locale

 local_ip = self.get_local_ip()

 # Crea service info

 self.service_info = ServiceInfo(

 service_type,

 service_name,

 addresses=[socket.inet_aton(local_ip)],

 port=self.port,

 properties={

 b'version': b'1.0',

 b'description': b'Python Chat Server'

 },

 server=f"{socket.gethostname()}.local."

)

 # Registra

 self.zeroconf.register_service(self.service_info)

 print(f"Servizio mDNS registrato: {service_name}")

 print(f"IP: {local_ip}, Porta: {self.port}")

 def unregister_service(self):

 if self.zeroconf and self.service_info:

 self.zeroconf.unregister_service(self.service_info)

 self.zeroconf.close()

 print("Servizio mDNS deregistrato")

 def get_local_ip(self):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect(("8.8.8.8", 80))

 ip = s.getsockname()[0]

 s.close()

 return ip

client_mdns.py

from zeroconf import Zeroconf, ServiceBrowser, ServiceStateChange

import socket

import time

class MDNSListener:

 def __init__(self):

 self.server_found = False

 self.server_ip = None

 self.server_port = None

 def on_service_state_change(self, zeroconf, service_type, name, state_change):

 if state_change is ServiceStateChange.Added:

 info = zeroconf.get_service_info(service_type, name)

 if info:

 self.server_ip = socket.inet_ntoa(info.addresses[0])

 self.server_port = info.port

 self.server_found = True

 print(f"Server trovato: {self.server_ip}:{self.server_port}")

class MDNSClient:

 def discover_server(self, timeout=5):

 zeroconf = Zeroconf()

 listener = MDNSListener()

 browser = ServiceBrowser(

 zeroconf,

 "_chatserver._tcp.local.",

 handlers=[listener.on_service_state_change]

)

 # Attendi discovery

 start_time = time.time()

 while not listener.server_found and (time.time() - start_time) < timeout:

 time.sleep(0.1)

 zeroconf.close()

 if listener.server_found:

 return listener.server_ip, listener.server_port

 return None, None

Glossario Tecnico
Broadcast: Invio di un messaggio a tutti i dispositivi in una subnet

Multicast: Invio a un gruppo specifico di destinatari

Unicast: Invio point-to-point a un singolo destinatario

Service Discovery: Meccanismo per trovare servizi in rete automaticamente

mDNS: Multicast DNS, protocollo per discovery locale

Subnet: Sottorete, divisione logica di una rete IP

CIDR: Classless Inter-Domain Routing, notazione per subnet (es. /24)

Port Scanning: Tecnica per identificare porte aperte su un host

TTL: Time To Live, durata di validità di un dato

Zeroconf: Zero Configuration Networking, set di tecnologie per auto-config

Documento versione 1.0

Ultima modifica: Gennaio 2026

Autore: Sistema di documentazione tecnica

Guida Completa: Service
Discovery in Reti Locali

Indice
1. Introduzione al problema

2. Soluzione 1: UDP Broadcast Discovery

3. Soluzione 2: Scansione Diretta della Subnet

4. Soluzione 3: File di Configurazione Condiviso

5. Soluzione 4: mDNS/Zeroconf

6. Confronto Comparativo

7. Raccomandazioni per Contesto Didattico

Introduzione al Problema
Il Problema

In un'applicazione client-server tradizionale, il client deve conoscere a priori l'indirizzo IP del server. Questo approccio

presenta diversi limiti:

Rigidità: ogni volta che il server cambia macchina, bisogna modificare il codice client

Manutenzione: in ambienti con più server, gestire gli IP diventa complesso

Scalabilità: difficile distribuire l'applicazione su diverse reti

Usabilità: l'utente finale deve conoscere dettagli tecnici (IP, porta)

La Soluzione: Service Discovery
Il Service Discovery è un meccanismo che permette ai client di trovare automaticamente i servizi disponibili sulla rete

senza configurazione manuale.

Requisiti base:

Automatico (nessun intervento umano)

Affidabile (deve trovare il server se esiste)

Veloce (tempi di discovery ragionevoli)

Semplice da implementare

Soluzione 1: UDP Broadcast Discovery
Concetto

Il client invia un messaggio broadcast UDP sulla rete locale. Tutti i dispositivi ricevono il messaggio, ma solo il server

risponde identificandosi.

Architettura

Client Network Server

 | | |

 |-- BROADCAST UDP -------->|------------------------->|

 | "DISCOVER_SERVER" | |

 | | |

 |<-------------------------|<------ UNICAST UDP ------|

 | | "SERVER:IP:PORT" |

 | | |

 |====== TCP CONNECTION =============================>|

 | | |

Implementazione Dettagliata

Server - Servizio Discovery

def discovery_service(self):

 # Socket UDP per ricevere broadcast

 discovery_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 discovery_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 # Bind su TUTTE le interfacce di rete

 discovery_socket.bind(('', self.discovery_port))

 while self.running:

 data, addr = discovery_socket.recvfrom(1024)

 message = data.decode('utf-8')

 if message == "DISCOVER_CHAT_SERVER":

 # Risponde con IP e porta del servizio chat

 response = f"CHAT_SERVER:{self.get_local_ip()}:{self.chat_port}"

 discovery_socket.sendto(response.encode('utf-8'), addr)

Punti chiave:

SO_REUSEADDR: permette di riutilizzare la porta anche se non completamente chiusa

bind(('', port)): ascolta su tutte le interfacce di rete (0.0.0.0)

Risposta unicast: torna solo al client richiedente

Client - Discovery

def discover_server(self, timeout=5):

 discovery_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 # Abilita il broadcast

 discovery_socket.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)

 discovery_socket.settimeout(timeout)

 # Invia broadcast a TUTTI i dispositivi nella subnet

 discovery_socket.sendto(

 "DISCOVER_CHAT_SERVER".encode('utf-8'),

 ('<broadcast>', self.discovery_port)

)

 # Attende risposta

 data, addr = discovery_socket.recvfrom(1024)

 # Parsing della risposta...

Punti chiave:

SO_BROADCAST: necessario per inviare pacchetti broadcast

<broadcast>: indirizzo speciale 255.255.255.255

settimeout(): evita attese infinite se nessun server risponde

Pro e Contro

� Vantaggi

1. Velocità eccezionale

Discovery quasi istantaneo (< 1 secondo)

Un solo pacchetto broadcast necessario

Nessuna iterazione su IP multipli

2. Efficienza di rete

Traffico minimo generato

Un solo pacchetto broadcast + una risposta unicast

Non sovraccarica la rete

3. Scalabilità

Funziona con qualsiasi numero di dispositivi

Costo computazionale costante O(1)

Non dipende dalla dimensione della subnet

4. Semplicità concettuale

Logica diretta e intuitiva

Facile debugging con Wireshark

Pattern standard nell'industria

5. Supporto multipli server

Più server possono rispondere contemporaneamente

Il client può scegliere o usare tutti i server trovati

Utile per load balancing o fault tolerance

6. Didattico

Insegna la differenza tra UDP e TCP

Mostra l'uso del broadcast

Introduce concetti di service discovery

� Svantaggi

1. Limitazioni di rete

Non attraversa i router: funziona solo nella subnet locale (broadcast domain)

Segmentazione VLAN: non funziona tra VLAN diverse

VPN: problemi con alcune configurazioni VPN

2. Firewall e sicurezza

Molti firewall bloccano broadcast UDP per default

Windows Firewall può richiedere regole esplicite

Alcuni antivirus segnalano come sospetto

3. Affidabilità UDP

UDP non garantisce consegna (unreliable protocol)

Pacchetti possono essere persi senza notifica

Nessun acknowledgment o retry automatico

4. Potenziali collisioni

Se più server rispondono simultaneamente, possibili conflitti

Necessita logica di gestione risposte multiple

Possibile confusione con servizi sulla stessa porta

5. Congestione broadcast

In reti molto grandi, il broadcast aggiunge traffico

Ogni dispositivo deve processare il pacchetto

Switch possono limitare broadcast rate

6. Problemi con Wi-Fi

Access Point possono filtrare broadcast

Reti guest spesso bloccano broadcast tra client

Modalità risparmio energetico può perdere pacchetti

Quando Usare UDP Broadcast
� Ideale per:

Reti locali piccole/medie (< 254 host)

Ambienti controllati (lab, ufficio)

Applicazioni dove velocità è prioritaria

Prototipi e proof of concept

Contesto didattico (insegna networking)

� Evitare quando:

Attraversamento router necessario

Reti enterprise con policy rigide

Ambienti con firewall restrittivi

Necessità di garanzie di consegna

Varianti e Ottimizzazioni

Multicast invece di Broadcast

Server

MCAST_GRP = '224.1.1.1'

sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP,

 socket.inet_aton(MCAST_GRP) + socket.inet_aton('0.0.0.0'))

Client

sock.sendto(message, (MCAST_GRP, port))

Vantaggi del Multicast:

Più efficiente del broadcast (solo interessati ricevono)

Può attraversare router se configurato (con IGMP)

Minore impatto sulla rete

Svantaggi:

Configurazione più complessa

Non sempre supportato da router consumer

Richiede setup IGMP

Retry e Timeout Adattivo

def discover_server_with_retry(self, max_attempts=3):

 for attempt in range(max_attempts):

 timeout = 2 * (attempt + 1) # Timeout crescente

 if self.discover_server(timeout):

 return True

 return False

Autenticazione e Sicurezza

import hmac

import hashlib

Server

def verify_request(self, data, shared_secret):

 message, signature = data.split('|')

 expected = hmac.new(shared_secret, message.encode(), hashlib.sha256).hexdigest()

 return hmac.compare_digest(signature, expected)

Soluzione 2: Scansione Diretta della
Subnet
Concetto

Il client determina la subnet locale (es. 192.168.1.0/24) e tenta di connettersi sequenzialmente o in parallelo a ogni IP

sulla porta del server.

Architettura

Client Network

 |

 |-- Calcola subnet: 192.168.1.0/24

 |

 |-- TCP SYN --> 192.168.1.1:5000 (timeout/refused)

 |-- TCP SYN --> 192.168.1.2:5000 (timeout/refused)

 |-- TCP SYN --> 192.168.1.3:5000 (SUCCESS!) ✓

 |

 |====== Connessione stabilita ======>

Implementazione Dettagliata

Determinazione Subnet

def get_local_network(self):

 # Ottiene IP locale

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect(("8.8.8.8", 80)) # Non invia realmente dati

 local_ip = s.getsockname()[0]

 s.close()

 # Crea oggetto rete con subnet /24

 network = ipaddress.IPv4Network(f"{local_ip}/24", strict=False)

 # Es: 192.168.1.100 -> 192.168.1.0/24

 return network

Punti chiave:

Trucco con connect() a 8.8.8.8: determina quale interfaccia userebbe il sistema

ipaddress.IPv4Network: modulo standard Python per gestione IP

strict=False: accetta IP host e calcola network address

/24: subnet mask 255.255.255.0 (254 host utilizzabili)

Scansione con Threading

def scan_network(self, max_workers=50):

 network = self.get_local_network()

 found_servers = []

 with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:

 # Crea un future per ogni IP

 future_to_ip = {

 executor.submit(self.check_server, ip): ip

 for ip in network.hosts()

 }

 # Processa risultati man mano che arrivano

 for future in concurrent.futures.as_completed(future_to_ip):

 ip = future_to_ip[future]

 if future.result():

 found_servers.append(str(ip))

 return found_servers

Punti chiave:

ThreadPoolExecutor: pool di thread per esecuzione parallela

max_workers=50: numero massimo thread simultanei (bilanciamento carico/velocità)

as_completed(): processa risultati appena disponibili (non attende tutti)

network.hosts(): esclude network address e broadcast (x.x.x.0 e x.x.x.255)

Verifica Server

def check_server(self, ip, timeout=0.5):

 try:

 test_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 test_socket.settimeout(timeout)

 # connect_ex() ritorna 0 se successo, errno altrimenti

 result = test_socket.connect_ex((str(ip), self.server_port))

 test_socket.close()

 return result == 0 # True se connessione riuscita

 except:

 return False

Punti chiave:

connect_ex(): versione non-blocking di connect() che ritorna errno

Timeout breve (0.5s): bilancia velocità e affidabilità

Gestione eccezioni: host irraggiungibili possono causare exception

Pro e Contro

� Vantaggi

1. Affidabilità massima

Funziona sempre se il server è raggiungibile via TCP

Non dipende da broadcast o multicast

Nessuna dipendenza da configurazioni di rete speciali

2. Attraversamento ostacoli

Funziona con firewall che bloccano broadcast

Compatibile con reti Wi-Fi guest (isolamento client)

Nessun problema con policy di rete restrittive

3. Compatibilità universale

Funziona su qualsiasi rete TCP/IP

Nessuna configurazione speciale richiesta

Supportato da tutti i sistemi operativi

4. Debugging semplice

Facile vedere cosa sta succedendo

Log chiari degli IP testati

Identificazione rapida di problemi di rete

5. Nessuna dipendenza da UDP

Elimina problemi di affidabilità UDP

Un solo protocollo da gestire (TCP)

Stack networking più semplice

6. Flessibilità

Può scansionare range personalizzati

Supporta subnet non standard

Adattabile a topologie complesse

� Svantaggi

1. Lentezza significativa

Con subnet /24: ~254 IP da testare

Anche con parallelismo: 5-20 secondi tipici

Timeout cumulativo può essere alto

Esperienza utente negativa per discovery lento

2. Carico di rete elevato

Genera 254+ connessioni TCP (SYN packets)

Ogni tentativo = handshake TCP parziale

Sovraccarico su switch e router

Può saturare tabelle di connessione NAT

3. Rilevamento sicurezza

IDS/IPS possono segnalare come port scan

Antivirus potrebbero bloccare

Log di sicurezza pieni di tentativi connessione

Possibile blocco temporaneo IP da fail2ban

4. Scalabilità problematica

Subnet /16 (65k host): impraticabile

Tempo cresce linearmente con dimensione rete

Consumo risorse (thread/memoria) elevato

Difficile parallelizzare oltre certi limiti

5. Falsi positivi

Altri servizi sulla stessa porta possono rispondere

Necessita verifica aggiuntiva (handshake applicativo)

Confusione con servizi non correlati

6. Problemi con subnet variabili

Assume sempre /24 (limite arbitrario)

Reti con /16 o /8 non gestibili

Subnet /25 o /26 funzionano ma rare

Calcolo automatico subnet mask complesso

7. Timeout management critico

Timeout troppo breve: miss del server

Timeout troppo lungo: scansione lentissima

Condizioni di rete variabili difficili da gestire

Necessità di tuning per ogni ambiente

Quando Usare Scansione Subnet
� Ideale per:

Ambienti con firewall restrittivi

Reti Wi-Fi guest o isolate

Quando broadcast non funziona

Subnet molto piccole (< 50 host)

Necessità di affidabilità assoluta

Scopo didattico: insegnare port scanning e threading

� Evitare quando:

Reti grandi (> 254 host)

Velocità è critica

Policy di sicurezza rigide (IDS attivi)

Risorse limitate (embedded systems)

Discovery frequenti necessari

Ottimizzazioni Avanzate

Scansione Intelligente con Priorità

def smart_scan(self):

 # Prova prima gli IP più probabili

 likely_ips = [

 f"{base}.1", # Gateway/server comuni

 f"{base}.2",

 f"{base}.10",

 f"{base}.100",

 f"{base}.254"

]

 for ip in likely_ips:

 if self.check_server(ip):

 return ip

 # Poi scansione completa

 return self.full_scan()

Scansione con Backoff Esponenziale

def adaptive_scan(self):

 batch_size = 10

 while hosts_remaining:

 batch = get_next_batch(batch_size)

 results = scan_batch(batch, timeout=current_timeout)

 if successful_rate > 0.8:

 timeout *= 0.9 # Riduci timeout

 batch_size *= 2 # Aumenta parallelismo

 else:

 timeout *= 1.2 # Aumenta timeout

 batch_size //= 2 # Riduci parallelismo

Cache dei Risultati

import json

from datetime import datetime, timedelta

def cache_server_location(self, ip):

 cache = {

 'ip': ip,

 'timestamp': datetime.now().isoformat(),

 'ttl': 3600 # 1 ora

 }

 with open('server_cache.json', 'w') as f:

 json.dump(cache, f)

def try_cached_server(self):

 try:

 with open('server_cache.json', 'r') as f:

 cache = json.load(f)

 cached_time = datetime.fromisoformat(cache['timestamp'])

 if datetime.now() - cached_time < timedelta(seconds=cache['ttl']):

 if self.check_server(cache['ip'], timeout=1):

 return cache['ip']

 except:

 pass

 return None

Scansione Multi-Port

def scan_multiple_ports(self, ip, ports=[5000, 5001, 5002]):

 for port in ports:

 if self.check_server(ip, port):

 return (ip, port)

 return None

Soluzione 3: File di Configurazione
Condiviso

Concetto
Server e client accedono a un file condiviso (su rete o cloud) dove il server scrive il proprio IP all'avvio e il client lo legge.

Implementazione

Server - Scrittura Configurazione

import json

from datetime import datetime

def register_server(self):

 config = {

 'server_ip': self.get_local_ip(),

 'server_port': self.chat_port,

 'hostname': socket.gethostname(),

 'last_update': datetime.now().isoformat(),

 'status': 'online'

 }

 # Opzione 1: File di rete

 with open('//shared-drive/config/server.json', 'w') as f:

 json.dump(config, f)

 # Opzione 2: Cloud storage (es. Google Drive API)

 # upload_to_drive('server.json', config)

 # Opzione 3: Database semplice

 # save_to_sqlite('servers.db', config)

Client - Lettura Configurazione

def discover_server_from_config(self):

 try:

 with open('//shared-drive/config/server.json', 'r') as f:

 config = json.load(f)

 # Verifica se il file non è troppo vecchio

 last_update = datetime.fromisoformat(config['last_update'])

 if datetime.now() - last_update < timedelta(minutes=5):

 return config['server_ip'], config['server_port']

 except:

 return None, None

Pro e Contro

� Vantaggi

1. Semplicità estrema

Implementazione banale (poche righe)

Nessun networking complesso

Debugging immediato (leggi il file)

2. Affidabilità

Non dipende da configurazioni di rete

Funziona attraverso subnet diverse

Nessun problema con firewall

3. Persistenza

Informazione sopravvive a restart

Storico disponibile

Audit trail automatico

4. Flessibilità

Può contenere metadati aggiuntivi

Supporto multipli server facilmente

Configurazione avanzata possibile

5. Nessun traffico di rete

Zero overhead di discovery

Non impatta performance di rete

Scalabile a qualsiasi dimensione

� Svantaggi

1. Dipendenza esterna critica

Richiede risorsa condivisa sempre accessibile

Single point of failure

Se condivisione non disponibile, sistema bloccato

2. Problemi di sincronizzazione

Race conditions possibili

Stale data (informazioni obsolete)

Necessita meccanismi di lock

3. Sicurezza

File accessibile da chiunque (rischio manomissione)

Necessita permessi condivisione corretti

Possibili information disclosure

4. Performance

Latenza di I/O file system

Overhead di rete per accesso condivisione

Possibili colli di bottiglia con molti client

5. Setup complesso

Richiede configurazione infrastruttura

Mappatura drive/mount necessaria

Problemi di portabilità tra OS

6. Non scalabile enterprise

Non adatto a deployment grandi

Gestione complicata in cloud

Problemi con containerizzazione

Quando Usare File Condiviso
� Ideale per:

Ambienti con NAS o file server esistente

Reti enterprise con Active Directory

Sviluppo/test interno

Pochi client (<10)

Prototipazione rapida

� Evitare quando:

Produzione senza infrastruttura condivisa

Deployment cloud-native

Alta disponibilità richiesta

Molti client concorrenti

Varianti

Database Centralizzato

import sqlite3

def register_to_db(self):

 conn = sqlite3.connect('//server/db/services.db')

 cursor = conn.cursor()

 cursor.execute('''

 INSERT OR REPLACE INTO servers

 (service_name, ip, port, last_seen)

 VALUES (?, ?, ?, ?)

 ''', ('chat_server', self.ip, self.port, datetime.now()))

 conn.commit()

 conn.close()

Redis/Key-Value Store

import redis

def register_to_redis(self):

 r = redis.Redis(host='shared-server', port=6379)

 r.setex('chat_server:location',

 300, # TTL 5 minuti

 f"{self.ip}:{self.port}")

Soluzione 4: mDNS/Zeroconf
Concetto

Protocollo standard (RFC 6762) per service discovery senza configurazione. Usato da Bonjour (Apple), Avahi (Linux), e

simili.

Implementazione con Zeroconf

Server

from zeroconf import Zeroconf, ServiceInfo

import socket

def register_mdns_service(self):

 zeroconf = Zeroconf()

 service_info = ServiceInfo(

 "_chatserver._tcp.local.", # Tipo servizio

 "MyChatServer._chatserver._tcp.local.", # Nome istanza

 addresses=[socket.inet_aton(self.get_local_ip())],

 port=self.chat_port,

 properties={

 'version': '1.0',

 'max_users': '10'

 }

)

 zeroconf.register_service(service_info)

 return zeroconf

Client

from zeroconf import Zeroconf, ServiceBrowser

class ChatServerListener:

 def add_service(self, zeroconf, type, name):

 info = zeroconf.get_service_info(type, name)

 if info:

 address = socket.inet_ntoa(info.addresses[0])

 port = info.port

 print(f"Server trovato: {address}:{port}")

 self.server_found(address, port)

def discover_mdns_server(self):

 zeroconf = Zeroconf()

 listener = ChatServerListener()

 browser = ServiceBrowser(zeroconf, "_chatserver._tcp.local.", listener)

 # Attende discovery...

Pro e Contro

� Vantaggi

1. Standard industriale

Protocollo RFC ufficiale

Supporto nativo in molti OS

Ampiamente testato e affidabile

2. Zero configuration

Nessun setup richiesto

Plug and play reale

User-friendly

3. Feature-rich

Metadati servizio inclusi

Supporto multipli servizi

TXT records per info aggiuntive

Service browsing

4. Efficienza

Usa multicast intelligente

Cache distribuita

Minimo traffico di rete

5. Interoperabilità

Funziona con servizi esistenti

Integrazione con Bonjour/Avahi

Standard cross-platform

� Svantaggi

1. Dipendenze esterne

Richiede libreria zeroconf o python-zeroconf

Installazione dipendenze su ogni client

Potenziali problemi di versioning

2. Complessità

Curva di apprendimento ripida

Documentazione dispersa

Debugging complicato

3. Limitazioni di rete

Non attraversa router (come broadcast)

Problemi con alcune configurazioni firewall

Richiede multicast funzionante

4. Overhead

Libreria pesante per uso semplice

Consumo memoria maggiore

Startup time più lungo

5. Non didattico

Black box per studenti

Nasconde dettagli implementativi

Poco formativo su networking

Quando Usare mDNS
� Ideale per:

Applicazioni professionali

Prodotti commerciali

Integrazione con ecosistema Apple/Linux

Necessità di standard riconosciuto

Feature avanzate richieste

� Evitare quando:

Scopo didattico (troppo astratto)

Dipendenze non accettabili

Deployment semplificato necessario

Controllo completo richiesto

Confronto Comparativo
Tabella Comparativa Completa

Criterio UDP
Broadcast

Scansione
Subnet

File
Condiviso mDNS/Zeroconf

Velocità ����� (<1s) �� (5-20s) ���� (1-2s) ���� (1-3s)
Affidabilità ��� ����� ��� ����
Semplicità Codice ���� ��� ����� ��
Efficienza Rete ����� �� ����� ����
Compatibilità
Firewall �� ����� ����� ���

Scalabilità ����� �� ��� ����
Zero Config ����� ����� �� �����
Valore Didattico ����� ���� �� ��
Prod-Ready ��� ��� �� �����
Setup Richiesto Nessuno Nessuno Medio Librerie
Dipendenze Nessuna Nessuna Infrastruttura python-zeroconf
Cross-Subnet � No � No � Sì � No
Sicurezza IDS � Ok ⚠ Port scan � Ok � Ok
Costo CPU Basso Alto Basso Medio
Costo Memoria Basso Medio Basso Alto

Metriche Prestazionali

Tempo di Discovery (Media)

Subnet /24 (254 host):

UDP Broadcast: 0.5s ████

Scansione (seq): 127s ██

Scansione (//50): 12s ████████████

File Condiviso: 1.2s ██████

mDNS: 2.1s ██████████

Traffico di Rete Generato

UDP Broadcast: ~500 bytes ▌

Scansione /24: ~15 KB ████████████████████

File Condiviso: 0 bytes (I/O file)

mDNS: ~2 KB ████

False Positive Rate

UDP Broadcast: < 1% (protocollo custom)

Scansione: 5-10% (altri servizi su stessa porta)

File Condiviso: < 1% (lettura diretta)

mDNS: < 1% (service type specifico)

Matrice Decisionale

Caratteristiche Ambiente → Soluzione Raccomandata

┌─────────────────────────┬──────────────────────────────┐

│ Rete locale piccola │ UDP Broadcast � │

│ Firewall permissivi │ │

│ Scopo didattico │ │

└─────────────────────────┴──────────────────────────────┘

┌─────────────────────────┬──────────────────────────────┐

│ Firewall restrittivi │ Scansione Subnet │

│ Wi-Fi guest │ (solo se < 50 host) │

│ Broadcast non funziona │ │

└─────────────────────────┴──────────────────────────────┘

┌─────────────────────────┬──────────────────────────────┐

│ NAS/file server esiste │ File Condiviso │

│ Ambiente corporate │ (prototipi e test) │

│ Pochi client statici │ │

└─────────────────────────┴──────────────────────────────┘

┌─────────────────────────┬──────────────────────────────┐

│ Prodotto commerciale │ mDNS/Zeroconf � │

│ Standard richiesto │ │

│ Integrazione Bonjour │ │

└─────────────────────────┴──────────────────────────────┘

Raccomandazioni per Contesto Didattico
Per Corsi di Sistemi e Reti

Approccio Pedagogico Progressivo

Lezione 1: Concetti Base

Problema: hardcoded IP addresses

Introduzione al service discovery

Soluzione manuale (file configurazione)

Lezione 2: UDP Broadcast � RACCOMANDATO

Differenza UDP vs TCP

Concetto di broadcast

Implementazione pratica

Debug con Wireshark

Lezione 3: Scansione e Threading

Port scanning etico

Concurrency in Python

ThreadPoolExecutor

Ottimizzazioni performance

Lezione 4: Protocolli Standard

Introduzione mDNS

Analisi RFC

Confronto soluzioni custom vs standard

Lab Pratico Suggerito

Esercitazione Completa (4 ore)

Parte 1: Implementazione Base (90 min)

1. Implementare chat server/client basico con IP hardcoded

2. Identificare limiti e problemi

3. Discussione: quali soluzioni esistono?

Parte 2: UDP Broadcast (90 min)

1. Aggiungere discovery service al server

2. Implementare discovery sul client

3. Testing in rete locale

4. Cattura traffico con Wireshark

5. Analisi pacchetti UDP

Parte 3: Problematiche Reali (45 min)

1. Simulare firewall: bloccare UDP broadcast

2. Tentare discovery → fallisce

3. Implementare fallback a scansione subnet

4. Confrontare prestazioni

Parte 4: Discussione e Ottimizzazioni (45 min)

1. Analisi pro/contro di ogni soluzione

2. Quando usare quale approccio

3. Sicurezza: autenticazione discovery

4. Progetti avanzati: load balancing, failover

Progetti Studente Avanzati

Livello Intermedio

Hybrid Discovery: prova broadcast, poi scansione come fallback

Multi-Server Load Balancer: client sceglie server meno carico

Server Heartbeat: verifica periodica che server sia ancora attivo

Encrypted Discovery: autenticazione tramite challenge-response

Livello Avanzato

Service Registry: server centrale che traccia tutti i servizi

Geo-Discovery: preferenza server geograficamente vicini

Fault Tolerance: failover automatico se server primario cade

Cross-Subnet Discovery: relay nodes per attraversare router

Valutazione e Criteri

Rubrica Valutazione Progetto

Criterio Punti Descrizione
Funzionalità 30 Discovery funziona in condizioni normali
Robustezza 20 Gestione errori e timeout
Performance 15 Velocità discovery accettabile
Codice 15 Leggibilità, commenti, struttura
Documentazione 10 README, diagrammi, esempi
Testing 10 Test cases e validazione

Domande di Verifica Comprensione

1. Concettuali

Perché UDP per discovery e TCP per chat?

Cosa succede se due server rispondono al broadcast?

Quali problemi causa il broadcast in reti grandi?

2. Pratiche

Come modificheresti il codice per supportare IPv6?

Come implementeresti retry con backoff esponenziale?

Come garantiresti che solo server autorizzati rispondano?

3. Analisi

Confronta overhead di broadcast vs scansione in subnet /16

Stima il tempo di scansione con 1000 host e timeout 0.5s

Quale soluzione useresti per IoT con 100+ dispositivi?

Risorse Didattiche Aggiuntive

Tools Consigliati

Wireshark: analisi traffico di rete (broadcast, multicast)

nmap: studio port scanning professionale

netcat: testing manuale connessioni TCP/UDP

iperf: misurazione performance di rete

Approfondimenti

RFC 6762 (mDNS): lettura standard ufficiale

Stevens "Unix Network Programming": capitoli su broadcast/multicast

Beej's Guide to Network Programming: reference pratica

Python socket documentation: API dettagliata

Progetti Open Source da Studiare

Avahi: implementazione mDNS Linux

Bonjour: implementazione Apple

Syncthing: discovery P2P avanzato

BitTorrent DHT: distributed hash table per discovery

Conclusioni e Best Practices
Decision Tree Finale

Devo implementare service discovery?

│

├─ Scopo didattico?

│ ├─ Sì → UDP Broadcast (insegna networking)

│ └─ No ↓

│

├─ Ambiente controllato (lab/ufficio)?

│ ├─ Sì → UDP Broadcast (veloce e semplice)

│ └─ No ↓

│

├─ Firewall bloccano broadcast?

│ ├─ Sì → Scansione Subnet (se < 100 host)

│ └─ No → UDP Broadcast

│

├─ Necessario attraversare router?

│ ├─ Sì → File Condiviso o Server Registry

│ └─ No → UDP Broadcast

│

├─ Prodotto commerciale?

│ └─ Sì → mDNS/Zeroconf (standard)

│

└─ Prototipo rapido interno?

 └─ Sì → File Condiviso (semplicissimo)

Checklist Implementazione

Prima di Iniziare

 Definire requisiti: velocità vs affidabilità

 Analizzare ambiente di rete target

 Verificare policy firewall

 Decidere se cross-subnet necessario

 Valutare competenze team

Durante Sviluppo

 Implementare timeout appropriati

 Gestire eccezioni di rete

 Aggiungere logging dettagliato

 Testare con Wireshark

 Validare su reti diverse

Prima del Deploy

 Test con firewall attivo

 Test con antivirus attivo

 Misurare performance reali

 Documentare requisiti di rete

 Preparare troubleshooting guide

Errori Comuni da Evitare
1. Timeout troppo brevi: miss dei server su reti lente

2. Nessun fallback: discovery fallisce, app inutilizzabile

3. Mancanza logging: debugging impossibile

4. Ignorare IPv6: sempre più comune

5. Hardcoded subnet /24: reti diverse usano /16, /22, ecc.

6. Nessuna autenticazione: rischi di sicurezza

7. Broadcasting eccessivo: congestione di rete

8. Race conditions: multipli server, nessuna sincronizzazione

Pattern Avanzati

Hybrid Approach (Raccomandato per Produzione)

def discover_server_robust(self):

 # 1. Prova cache locale

 if server := self.try_cache():

 return server

 # 2. Prova UDP broadcast (veloce)

 if server := self.udp_discovery(timeout=2):

 self.cache_server(server)

 return server

 # 3. Fallback a scansione (affidabile)

 if server := self.subnet_scan(max_workers=30):

 self.cache_server(server)

 return server

 # 4. Fallback manuale

 return self.manual_input()

Service Registry Pattern

Server centrale mantiene lista servizi

class ServiceRegistry:

 def register(self, service_name, ip, port, ttl=300):

 self.services[service_name] = {

 'ip': ip,

 'port': port,

 'expires': time.time() + ttl

 }

 def discover(self, service_name):

 if service_name in self.services:

 if time.time() < self.services[service_name]['expires']:

 return self.services[service_name]

 return None

Sicurezza: Considerazioni Critiche

Autenticazione Discovery

import hmac

import hashlib

SECRET_KEY = b'shared-secret-key'

Server

def authenticate_response(self, message):

 signature = hmac.new(SECRET_KEY, message.encode(), hashlib.sha256).hexdigest()

 return f"{message}|{signature}"

Client

def verify_response(self, response):

 message, signature = response.rsplit('|', 1)

 expected = hmac.new(SECRET_KEY, message.encode(), hashlib.sha256).hexdigest()

 return hmac.compare_digest(signature, expected)

Rate Limiting

from collections import defaultdict

import time

class RateLimiter:

 def __init__(self, max_requests=5, window=60):

 self.requests = defaultdict(list)

 self.max_requests = max_requests

 self.window = window

 def allow_request(self, ip):

 now = time.time()

 # Rimuovi richieste vecchie

 self.requests[ip] = [t for t in self.requests[ip]

 if now - t < self.window]

 if len(self.requests[ip]) < self.max_requests:

 self.requests[ip].append(now)

 return True

 return False

Riferimenti e Risorse
Standard e RFC

RFC 6762: Multicast DNS

RFC 2782: DNS SRV Records

RFC 919: Broadcasting Internet Datagrams

Libri Consigliati
"Unix Network Programming" - W. Richard Stevens

"Computer Networks" - Andrew S. Tanenborough

"Effective Python" - Brett Slatkin (per threading)

Documentazione Online
Python socket module: https://docs.python.org/3/library/socket.html

(https://docs.python.org/3/library/socket.html)

Python ipaddress module: https://docs.python.org/3/library/ipaddress.html

(https://docs.python.org/3/library/ipaddress.html)

Zeroconf documentation: https://python-zeroconf.readthedocs.io/ (https://python-zeroconf.readthedocs.io/)

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/ipaddress.html
https://python-zeroconf.readthedocs.io/

Tools e Software
Wireshark: https://www.wireshark.org/ (https://www.wireshark.org/)

nmap: https://nmap.org/ (https://nmap.org/)

Avahi: https://www.avahi.org/ (https://www.avahi.org/)

Appendice: Codice Completo
Implementazioni

A. UDP Broadcast Discovery (Versione Estesa)

Vedi artifact chat_server_discovery

Vedi artifact chat_client_discovery

B. Scansione Subnet (Versione Estesa)

Vedi artifact chat_client_subnet_scan

C. Esempio File Condiviso

https://www.wireshark.org/
https://nmap.org/
https://www.avahi.org/

server_config_writer.py

import json

import socket

from datetime import datetime

class ConfigFileServer:

 def __init__(self, config_path='\\\\shared\\server_config.json'):

 self.config_path = config_path

 self.port = 5000

 def register(self):

 config = {

 'ip': self.get_local_ip(),

 'port': self.port,

 'hostname': socket.gethostname(),

 'timestamp': datetime.now().isoformat(),

 'status': 'active'

 }

 try:

 with open(self.config_path, 'w') as f:

 json.dump(config, f, indent=2)

 print(f"Server registrato: {config}")

 except Exception as e:

 print(f"Errore registrazione: {e}")

 def get_local_ip(self):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect(("8.8.8.8", 80))

 ip = s.getsockname()[0]

 s.close()

 return ip

client_config_reader.py

import json

from datetime import datetime, timedelta

class ConfigFileClient:

 def __init__(self, config_path='\\\\shared\\server_config.json'):

 self.config_path = config_path

 def discover_server(self, max_age_minutes=5):

 try:

 with open(self.config_path, 'r') as f:

 config = json.load(f)

 # Verifica che il config non sia troppo vecchio

 timestamp = datetime.fromisoformat(config['timestamp'])

 age = datetime.now() - timestamp

 if age < timedelta(minutes=max_age_minutes):

 print(f"Server trovato: {config['ip']}:{config['port']}")

 return config['ip'], config['port']

 else:

 print(f"Config obsoleto (età: {age})")

 return None, None

 except FileNotFoundError:

 print("File di configurazione non trovato")

 return None, None

 except Exception as e:

 print(f"Errore lettura config: {e}")

 return None, None

D. Esempio mDNS/Zeroconf Base

server_mdns.py

from zeroconf import Zeroconf, ServiceInfo

import socket

import time

class MDNSServer:

 def __init__(self, port=5000):

 self.port = port

 self.zeroconf = None

 self.service_info = None

 def register_service(self):

 self.zeroconf = Zeroconf()

 # Definizione servizio

 service_type = "_chatserver._tcp.local."

 service_name = f"MyChatServer.{service_type}"

 # Ottieni IP locale

 local_ip = self.get_local_ip()

 # Crea service info

 self.service_info = ServiceInfo(

 service_type,

 service_name,

 addresses=[socket.inet_aton(local_ip)],

 port=self.port,

 properties={

 b'version': b'1.0',

 b'description': b'Python Chat Server'

 },

 server=f"{socket.gethostname()}.local."

)

 # Registra

 self.zeroconf.register_service(self.service_info)

 print(f"Servizio mDNS registrato: {service_name}")

 print(f"IP: {local_ip}, Porta: {self.port}")

 def unregister_service(self):

 if self.zeroconf and self.service_info:

 self.zeroconf.unregister_service(self.service_info)

 self.zeroconf.close()

 print("Servizio mDNS deregistrato")

 def get_local_ip(self):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 s.connect(("8.8.8.8", 80))

 ip = s.getsockname()[0]

 s.close()

 return ip

client_mdns.py

from zeroconf import Zeroconf, ServiceBrowser, ServiceStateChange

import socket

import time

class MDNSListener:

 def __init__(self):

 self.server_found = False

 self.server_ip = None

 self.server_port = None

 def on_service_state_change(self, zeroconf, service_type, name, state_change):

 if state_change is ServiceStateChange.Added:

 info = zeroconf.get_service_info(service_type, name)

 if info:

 self.server_ip = socket.inet_ntoa(info.addresses[0])

 self.server_port = info.port

 self.server_found = True

 print(f"Server trovato: {self.server_ip}:{self.server_port}")

class MDNSClient:

 def discover_server(self, timeout=5):

 zeroconf = Zeroconf()

 listener = MDNSListener()

 browser = ServiceBrowser(

 zeroconf,

 "_chatserver._tcp.local.",

 handlers=[listener.on_service_state_change]

)

 # Attendi discovery

 start_time = time.time()

 while not listener.server_found and (time.time() - start_time) < timeout:

 time.sleep(0.1)

 zeroconf.close()

 if listener.server_found:

 return listener.server_ip, listener.server_port

 return None, None

Glossario Tecnico
Broadcast: Invio di un messaggio a tutti i dispositivi in una subnet

Multicast: Invio a un gruppo specifico di destinatari

Unicast: Invio point-to-point a un singolo destinatario

Service Discovery: Meccanismo per trovare servizi in rete automaticamente

mDNS: Multicast DNS, protocollo per discovery locale

Subnet: Sottorete, divisione logica di una rete IP

CIDR: Classless Inter-Domain Routing, notazione per subnet (es. /24)

Port Scanning: Tecnica per identificare porte aperte su un host

TTL: Time To Live, durata di validità di un dato

Zeroconf: Zero Configuration Networking, set di tecnologie per auto-config

Documento versione 1.0

Ultima modifica: Gennaio 2026

Autore: Sistema di documentazione tecnica

